Conservation biological control for stored product insects

Natural occurrence of natural enemies is common in storage, processing, transportation and marketing facilities (see Prevalence of naturally occurring natural enemies page) so conservation biological control may be applicable. Many parasitoids and predators have shorter egg to adult developmental times than their host or prey allowing their populations to grow more rapidly than those of host or prey (Table Developmental time natural enemies). Natural enemies developed between 27.5 and 32.5oC in a fraction (% in parenthenses) of the  time that their host or prey do, Habrobracon hebetor on Ephestia kuhniella (20.40%), Plastanoxus westwoodi on Cryptolestes pusillus (39.80%), Xylocoris flavipes on Plodia interpunctella (43.10%), Cephalonomia tarsalis on Oryzaephilus surinamensis (48.70%), Lariophagus distinguendus on Sitophilus oryzae (50.40%), Anisopteromalus calandrae on Callosobruchus maculatus (57.40%), Lyctocoris campestris on Plodia interpunctella (57.50%), Theocolax elegans on Sitophilus zeamais (57.90%),Venturia canescens on Plodia interpunctella (58.80%).

Feeding and sheltering of natural enemies have been shown to be beneficial and the chemical ecology of these natural enemies has been studied so there are opportunities to improve their efficacy using semiochemicals. Insecticide resistant strains of natural enemies may make possible the use of insecticides and natural enemies together (see insecticide resistant natural enemies). Also, cooling commodities by aeration can slow larval development of host or prey and give natural enemies more time to find host or prey. Wyckhuys et al. 2013 provides a meta-analysis of current and potential use of conservation biological control for insect crop pests in the developing world.

Wyckhuys, Kris AG, Yanhui Lu, Helda Morales, Luis L. Vazquez, Jesusa C. Legaspi, Panagiotis A. Eliopoulos, and Luis M. Hernandez 2013. Current status and potential of conservation biological control for agriculture in the developing world. Biological Control 65(1): 152-167.

Other pages on biological control are:

Biological Control

Blattisocius tarsalis prey

Cheyletus prey

Insecticide Resistant Natural Enemies

Natural enemies of Tribolium castaneum

Phthorimaea operculella natural enemies

Prevalence of naturally occurring natural enemies

Trichogramma natural enemies of stored-product insects

Adult Feeding

Amat, Isabelle, Sebastien Besnard, Vincent Foray, Perrine Pelosse, Carlos Bernstein, and Emmanuel Desouhant. 2012. Fuelling Flight in a Parasitic Wasp: Which Energetic Substrate to Use? Ecological Entomology 37(6): 480–489. (Venturia canescens)

Ashraf, Sumra, Zain ul Abdin, Saqi Kosar Abbas, Rao Sohail Ahmad Khan, Muhammad Tahir, Sehrish Rasool, Maryam Anwar, and Fiaz Hussain. 2017. Effect of Different Diet Concentrations on Longevity and Fecundity of Parasitic Wasp Bracon hebetor (Say.) (Hymenoptera: Braconidae). Pakistan Journal of Zoology 49(3): 761–767.

Casas, J., S. Pincebourde, N. Mandon, F. Vannier, R. Poujol, and D. Giron. 2005. Lifetime Nutrient Dynamics Reveal Simultaneous Capital and Income Breeding in a Parasitoid (Eupelmus vuilletti). Ecology 86: 545–554.

Choi, WI, TJ Yoon, and MI Ryoo. 2001. Host-Size-Dependent Feeding Behaviour and Progeny Sex Ratio of Anisopteromalus calandrae (Hym., Pteromalidae). Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 125(1–2): 71–77. (Sitophilus oryzae)

Desouhant, E., G. Driessen, Isabelle Amat, and C. Bernstein 2005. Host and food searching in a parasitic wasp Venturia canescens: a trade-off between current and future reproduction?. Animal Behaviour 70(1): 145-152

Desouhant, Emmanuel, Patrice Lucchetta, David Giron, and Carlos Bernstein. 2010. Feeding Activity Pattern in a Parasitic Wasp When Foraging in the Field. Ecological Research 25 (2): 419–428.

Flinn, PW, and DW Hagstrum 1995. Simulation Model of Cephalonomia waterstoni (Hymenoptera: Bethylidae) Parasitizing the Rusty Grain Beetle (Coleoptera: Cucujidae). Environmental Entomology 24(6): 1608–1615.

Giron, D., S. Pincebourde, and J. Casas. 2004. Lifetime Gains of Host‐feeding in a Synovigenic Parasitic Wasp (Eupelmus vuilletti). Physiological Entomology 29(5): 436–442.

Gómez, Jaime, Juan F. Barrera, Pablo Liedo, and Javier Valle 2012. Influence of age and diet on the performance of Cephalonomia stephanoderis (Hymenoptera, Bethylidae) a parasitoid of the coffee berry borer, Hypothenemus hampei (Coleoptera, Curculionidae). Revista Brasileira de Entomologia 56: 95-100.

Hagstrum, D. W.  1983.  Self‑provisioning with paralyzed hosts and age, density and concealment of hosts as factors influencing parasitization of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) by Bracon hebetor Say (Hymenoptera: Braconidae).  Environ. Entomol. 12: 1727‑1732.

Hansen, LS, and KMV Jensen. 2002. Effect of Temperature on Parasitism and Host-Feeding of Trichogramma turkestanica (Hymenoptera : Trichogrammatidae) on Ephestia kuehniella (Lepidoptera : Pyralidae). Journal of Economic Entomology 95(1): 50–56.

Huang, Yanzhang, Anqi Dai, Zhenkun Mao, Zhihao Cai, and Junqi Jiang. 2020. Effect of supplementary nutrition on the reproduction and mating behaviour of Habrobracon hebetor (Hymenoptera: Braconidae). European Journal of Entomology (EJE) 117(1): 393-399.

Jervis MA, Ellers J and Harvey JA 2008. Resource acquisition allocation and utilization in parasitoid reproductive strategy. Ann Rev Entomol 53: 361–385

Jervis, MA, NAC Kidd, and HE Almey. 1994. Postreproductive Life in the Parasitoid Bracon hebetor (Say) (Hym-Braconidae). Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 117(1): 72–77.

Lauziere, I., G. Perez-Lachaud, and J. Brodeur. 2000. Effect of Female Body Size and Adult Feeding on the Fecundity and Longevity of the Parasitoid Cephalonomia stephanoderis Betrem (Hymenoptera : Bethylidae). Annals of the Entomological Society of America 93(1): 103–109. (Hypothenemus hampei)

Nickle, D. A. and Hagstrum, D. W.  1981.  Provisioning with preparalyzed hosts to improve parasite effectiveness: a pest management strategy for stored commodities.  Environ. Entomol. 10: 560‑564.

Pelosse, Perrine, Carlos Bernstein, and Emmanuel Desouhant. 2007. Differential energy allocation as an adaptation to different habitats in the parasitic wasp Venturia canescens. Evolutionary Ecology 21(5): 669-685.

Pelosse, P., I. Amat, C. Bernstein, and E. Desouhant. 2010. The Dynamics of Energy Allocation in Adult Arrhenotokous and Thelytokous Venturia canescens. Entomologia Experimentalis et Applicata 135(1): 68–76.

Sood, Seema, and H. R. Pajni. 2006. Effect of Honey Feeding on Longevity and Fecundity of Uscana mukerjii (Mani) (Hymenoptera : Trichogrammatidae), an Egg Parasitoid of Bruchids Attacking Stored Products (Coleoptera : Bruchidae). Journal of Stored Products Research 42(4): 438–444.

Stein-Beling, I. 1969. Uber den ausflug der schlupfwespe Nemeritis canescens Grav. und uber die bedeutung des geruchssinnes bei der ruckkehr zum wirt (The Flight of the Parasite Nemeritis canescens and the Significance of the Olfactory Organs for the Return). Biologisches Zentralblatt 54: 147–169.

Uckan, F., and E. Ergin. 2003. Temperature and Food Source Effects on Adult Longevity of Apanteles galleriae Wilkinson (Hymenoptera: Braconidae). Environmental Entomology 32: 441–446.

Yan, Gao, Zhang Zhongrun, and Xu Zaifu. 2006. Effects of temperature and host density on parasitizing and host–feeding of Theocolax elegans (Hymenoptera: Pteromalidae) to Sitophilus oryzae (Coleoptera: Curculionidae) in stored wheat. Kun Chong xue bao. Acta Entomologica Sinica 49(4): 636-642.

Yazdanian, M., Khabbaz Saber, H., and Afshari, A. 2014. Effect of sugar concentration and feeding frequency on adult’s longevity and progeny production of the parasitoid wasp, Habrobracon hebetor (Hymenoptera: Braconidae). Plant Pests Research 3(4): 1-16 (In Persian)

Sheltering with facilitator box

Lucas, E.; Riudavets, J.; Castañe, C. 2015. A banker box to improve the impact of Habrobracon hebetor on stored product insects. IOBCWPRS Bull.111: 403–407.

Niedermayer, S., and J. L. M. Steidle. 2008. Development of a Mass Rearing Device for the Use of Lariophagus distinguendus (Förster) against Sitophilus granarius L. in Grain. IOBC/Wprs Bulletin 40: 165–169.

Niedermayer, S. and Steidle, J.L.M. 2013. The Hohenheimer Box—A new way to rear and release Lariophagus distinguendusto control stored product pest insects. Biol. Control 64: 263–269.

Solà, M.; Castañé, C.; Lucas, E. and Riudavets, J. 2018. Optimization of a banker box system to rear and release the parasitoid Habrobracon hebetor(Hymenoptera: Braconidae) for the control of stored-product moths. J. Econ. Entomol. 111: 2461–2466.

Kiruba, Solomon, Sarma Mohan, Sathiadas Sam Manohar Das, and Smaragdi Papadopoulou. 2012. Experimental Confirmation of the Bruchidae Natural Parasitism Efficacy using an Innovative Device, Friendly to the Environment. Biotechnology and Biotechnological Equipment 26(1): 2722-2725. (Callosobruchus maculatus, Uscana lariophaga, Dinarmus basalis)

Semiochemicals

Amante, Marco, Agatino Russo, Matthias Schöller, and Johannes LM Steidle. 2018. Olfactory host location and host preference of Holepyris sylvanidis (Brèthes) (Hymenoptera: Bethylidae), a parasitoid of Tribolium confusum Jacquelin du Val and T. castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research 78: 105-109.

Awater, Sarah, and Benjamin Furstenau. 2018. The Potential of Host-Specific Volatiles from Tribolium confusum Larval Faeces for Luring the Ectoparasitoid Holepyris sylvanidis. p. 139–143. In C. S. Adler, G. Opit, B. Fürstenau, C. Müller-Blenkle, P. Kern, F. H. Arthur, C. G. Athanassiou, et al. eds. Proceedings of the12th International Working Conference on Stored Product Protection (IWCSPP)

Awater-Salendo, S., H. Schulz, M. Hilker, and B. J. Furstenau. 2020. The Importance of Methyl-Branched Cuticular Hydrocarbons for Successful Host Recognition by the Larval Ectoparasitoid Holepyris sylvanidis. Chem Ecol. 46(11–12): 1032–46.

Barrera, JF, J. Gomez, and C. Alauzet. 1994. Evidence for a Marking Pheromone in Host Discrimination by Cephalonomia stephanoderis (Hym, Bethylidae). Entomophaga 39(3–4): 363–366.

Bender, E., S. M. Jahnke, and A. Köhler. 2020. Chemotaxic responses of Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) to odors of larvae, pupae, and the diet of Lasioderma serricorne (Fabricius) (Coleoptera: Ptinidae). Neotropical Entomology 49(2): 171-178.

Benelli, Giovanni, Noemi Pacini, Barbara Conti, and Angelo Canale. 2013. Following a scented beetle: larval faeces as a key olfactory cue in host location of Stegobium paniceum (Coleoptera: Anobiidae) by Lariophagus distinguendus (Hymenoptera: Pteromalidae). Chemoecology 23(2): 129-136.

Birkinshaw, LA, RJ Hodges, and S. Addo. 2004. Flight Behaviour of Prostephanus truncatus and Teretrius nigrescens Demonstrated by a Cheap and Simple Pheromone-Baited Trap Designed to Segregate Catches with Time. Journal of Stored Products Research 40(2): 227–232.

Boeye, J., GA Laborius, and FA Schulz 1992. The Response of Teretriosoma nigrescens Lewis (Col, Histeridae) to the Pheromone of Prostephanus truncatus (Horn) (Col, Bostrichidae). Anzeiger Fur Schadlingskunde Pflanzenschutz Umweltschutz 65(8): 153–157.

Chiu-Alvarado, Pilar, Juan F. Barrera, and Julio C. Rojas 2009. Attraction of Prorops nasuta (Hymenoptera: Bethylidae), a parasitoid of the coffee berry borer (Coleoptera: Curculionidae), to host-associated olfactory cues. Annals of the Entomological Society of America 102(1): 166-171

Chiu-Alvarado, Pilar, and Julio C. Rojas 2011. Behavioural responses of bethylid parasitoid species of the coffee berry borer to chemicals cues from host and non-host dust/frass. BioControl 56(1): 45-53. (Cephalonomia stephanoderis, Prorops nasuta)

Chiu-Alvarado, Pilar, Antonio Santiesteban, and Julio C Rojas. 2012. Host kairomones elicit area-restricted search by Prorops nasuta, a parasitoid of the coffee berry borer. The Open Entomology Journal 6(1): 17-21.

Cruz-López, Leopoldo, Bernardino Díaz-Díaz, and Julio C. Rojas. 2016. Coffee volatiles induced after mechanical injury and beetle herbivory attract the coffee berry borer and two of its parasitoids. Arthropod-Plant Interactions 10(2): 151-159.

Fürstenau, Benjamin, Cornel Adler, Hartwig Schulz, and Monika Hilker. 2016. Host Habitat Volatiles Enhance the Olfactory Response of the Larval Parasitoid Holepyris sylvanidis to Specifically Host-Associated Cues. Chemical Senses 41(7): 611–621.

Fürstenau, Benjamin, and Monika Hilker. 2017. Cuticular Hydrocarbons of Tribolium confusum Larvae Mediate Trail Following and Host Recognition in the Ectoparasitoid Holepyris sylvanidis. Journal of Chemical Ecology 43(9): 858–868.

Germinara, G. S., A. De Cristofaro, and G. Rotundo. 2009. Antennal Olfactory Responses to Individual Cereal Volatiles in Theocolax Elegans (Westwood) (Hymenoptera: Pteromalidae). Journal of Stored Products Research 45(3): 195–200.

Germinara, G. S., A. De Cristofaro, and G. Rotundo. 2016. Electrophysiological and Behavioral Responses of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae) to Cereal Grain Volatiles. BioMed Research International e5460819

Germinara, G. S., G. Rotundo, and A. De Cristofaro. 2003. Ruolo Di Sostanze Volatili Dei Cereali Nella Localizzazione Dell’habitat Dell’ospite in Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae). (Role of Volatile Grain in the Localization of the Habitat of the Host in Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae)). P. 186–193. In Piero Cravedi ed. Atti del 7° Simposio: La difesa antiparassitaria nelle industrie alimentari e la protezione degli alimenti (Proceedings of the 7th Symposium: The pest in the food and protection food), Chiriotti.

Germinara, G. S., G. Rotundo, and A. De Cristofaro. 2004. Sostanze Volatili Dei Cereali e Localizzazione Dell’habitat Dell’ospite in Theocolax elegans. (Volatiles Cereals and Localization in the Host Habitat Theocolax elegans). Tecnica Molitoria 55(4): 324–30.

Giunti, Giulia, Orlando Campolo, Pasquale Caccamo, Francesca Laudani, and Vincenzo Palmeri. 2021. Volatile Infochemicals from Rhyzopertha dominica Larvae and Larval Feces Involved in Theocolax elegans Host Habitat Location. Insects 12(2), 142.

Gomez, J., JF Barrera, JC Rojas, J. Macias-Samano, JP Liedo, and MH Badii. 2005. Volatile Compounds Released by Disturbed Females of Cephalonomia stephanoderis (Hymenoptera : Bethylidae): A Parasitoid of the Coffee Berry Borer Hypothenemus hampei (Coleoptera : Scolytidae). Florida Entomologist 88(2): 180–187.

Helbig, J., GA Laborius, and FA Schulz. 1992. Investigations on the Distance of Trapping Activity of the Synthetic Pheromone Trunc-Call (1+2) of Prostephanus-Truncatus (Horn) (Col, Bostrichidae) on Its Predator Teretriosoma nigrescens Lewis (Col, Histeridae). Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 113(5): 425–429.

Hodges, RJ, and CC Dobson 1998. Laboratory Studies on Behavioural Interactions of Prostephanus truncatus (Horn) (Coleoptera : Bostrichidae) with Conspecifics, Synthetic Pheromone and the Predator Teretriosoma nigrescens (Lewes) (Coleoptera : Histeridae). Journal of Stored Products Research 34(4): 297–305.

Howard, RW, and PW Flinn. 1990. Larval Trails of Cryptolestes ferrugineus (Coleoptera, Cucujidae) as Kairomonal Host-Finding Cues for the Parasitoid Cephalonomia waterstoni (Hymenoptera, Bethylidae). Annals of the Entomological Society of America 83(2): 239–345.

Howard, RW, and F. Infante. 1996. Cuticular Hydrocarbons of the Host-Specific Ectoparasitoid Cephalonomia Stephanoderis (Hymenoptera: Bethylidae) and Its Host the Coffee Berry Borer (Coleoptera: Scolytidae). Annals of the Entomological Society of America 89(5): 700–709.

Kühbandner, Stephan, K. Hacker, S. Niedermayer, J. L. M. Steidle, and Joachim Ruther. 2012. Composition of cuticular lipids in the pteromalid wasp Lariophagus distinguendus is host dependent. Bulletin of Entomological Research 102(5): 610-617.

López-Rodríguez, Marta Aremi, Pilar Chiu-Alvarado, and Julio C. Rojas 2009. Factors affecting the attraction of Prorops nasuta Waterston (Hymenoptera: Bathylidae) to odors emitted by dust/frass of its host, the coffee berry borer. Acta Zoológica Mexicana 25(1): 49-60.

Mbata, GN, S. Shu, TW Phillips, and SB Ramaswamy. 2004. “Semiochemical Cues Used by Pteromalus cerealellae (Hymenoptera : Pteromalidae) to Locate Its Host, Callosobruchus maculatus (Coleoptera : Bruchidae). Annals of the Entomological Society of America 97(2): 353–360

Onagbola, Ebenezer O., and Henry Y. Fadamiro. 2011. Electroantennogram and Behavioral Responses of Pteromalus Cerealellae to Odor Stimuli Associated with Its Host, Callosobruchus maculatus. Journal of Stored Products Research 47(2): 123–29.

Onagbola, Ebenezer O., and Henry Y. Fadamiro. 2011. Response of Pteromalus cerealellae to Conspecific Odor: Evidence for Female- and Male-Produced Pheromones? Journal of Stored Products Research 47(4): 393–98.

Onagbola, Ebenezer Oloyede. 2008. Studies on the Biology and Host Location Behavior of Pteromalus cerealellae (Ashmead) (Hymenoptera: Pteromalidae), a Parasitoid of Callosobruchus maculatus (F.)(Coleoptera: Chrysomelidae). PhD diss., Auburn University.

Pezzini, C.; Rosa, K.P.; Jahnke, S.M.; Köhler, A. 2020. Chemotaxis of Habrobracon hebetor(Say) (Hymenoptera: Braconidae) in response to larvae of Ephestia kuehniella(Zeller) (Lepidoptera: Pyralidae) and host food substrate with tobacco. J. Stored Prod. Res. 89, 1680.

Román-Ruíz, Ariana K., Edi A. Malo, Graciela Huerta, Alfredo Castillo, Juan F. Barrera, and Julio C. Rojas. 2012. Identification and origin of host-associated volatiles attractive to Prorops nasuta, a parasitoid of the coffee berry borer. Arthropod-Plant Interactions 6(4): 611-620.

Scholz, D., C. Borgemeister, and HM Poehling 1998. EAG and Behavioural Responses of the Larger Grain Borer, Prostephanus truncatus, and Its Predator, Teretriosoma nigrescens, to the Borer-Produced Aggregation Pheromone. Physiological Entomology 23(3): 265–273.

Steidle, Johannes LM. 2000. Host recognition cues of the granary weevil parasitoid Lariophagus distinguendus. Entomologia Experimentalis et Applicata 95(2): 185-192.

Steidle, Johannes LM, Judith Lanka, Caroline Müller, and Joachim Ruther. 2001. The use of general foraging kairomones in a generalist parasitoid. Oikos 95(1): 78-86.

Steidle, Johannes LM, and Joachim Ruther. 2000. Chemicals used for host recognition by the granary weevil parasitoid Lariophagus distinguendus. Journal of Chemical Ecology 26(12): 2665-2675.

Steidle, Johannes LM, and Matthias Schöller. 1997. Olfactory host location and learning in the granary weevil parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). Journal of insect behavior 10(3): 331-342.

Steidle, Johannes LM, Anke Steppuhn, and Judith Reinhard. 2001. Volatile cues from different host complexes used for host location by the generalist parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). Basic and Applied Ecology 2(1): 45-51.

Steidle, Johannes LM, Anke Steppuhn, and Joachim Ruther. 2003. Specific foraging kairomones used by a generalist parasitoid. Journal of Chemical Ecology 29(1): 131-143.

Steiner, Sven, Johannes LM Steidle, and Joachim Ruther. 2007. Host-associated kairomones used for habitat orientation in the parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). Journal of stored products research 43(4): 587-593.

Stewart-Jones, A. 2002. Investigation of Close-Range Behaviors and Chemical Cues Used by Teretrius nigrescens (Lewis) (Coleoptera: Histeridae) in Finding Its Prey Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). PhD diss., Natural Resources Institute, University of Greenwich

Stewart-Jones, A., R. J. Hodges, D. I. Farman, and D. R. Hall 2007. Prey-Specific Contact Kairomones Exploited by Adult and Larval Teretrius nigrescens: A Behavioural Comparison across Different Stored-Product Pests and Different Pest Substrates. Journal of Stored Products Research 43(3): 265–275.

Stewart-Jones, A., RJ Hodges, LA Birkinshaw, and DR Hall 2004. Responses of Teretrius nigrescens toward the Dust and Frass of Its Prey, Prostephanus truncatus. Journal of Chemical Ecology 30(8): 1629–1646.

Stewart-Jones, A., RJ Hodges, DI Farman, and DR Hall 2006. Solvent Extraction of Cues in the Dust and Frass of Prostephanus truncatus and Analysis of Behavioural Mechanisms Leading to Arrestment of the Predator Teretrius nigrescens. Physiological Entomology 31(1): 63–72.

Strand, M. R., H. J. Williams, S. B. Vinson, and A. Mudd. 1989. Arrestment and Trail Following Response of Bracon hebetor (Say) to Kairomones from Ephestia kuehniella Zeller. Journal of Chemical Ecology 15: 1491–1500.

Tang, Qingfeng 2016. Olfactory responses of Theocolax elegans (Hymenoptera, Pteromalidae) females to volatile signals derived from host habitats. Journal of Hymenoptera Research 49: 95-109.

Tang, Qingfeng. 2016. Sitophilus zeamais-Induced Rice Grain Volatiles: Attractiveness Towards the Generalist Parasitoid Wasp, Theocolax elegans. Pakistan J.Zool. 48(6): 1817–1824.

Tang, Qingfeng, Yuejin Wu, Binmei Liu, and Zengliang Yu. 2009. Olfactory responses of Lariophagus distinguendus (Hymenoptera: Pteromalidae) to volatile signals derived from host habitats. Philippine Agricultural Scientist 92(2): 133-142.

Waage, JK 1978. Arrestment responses of parasitoid, Nemeritis canescens, to a contact chemical produced by its host, Plodia interpunctella. Physiol. Entomol. 3: 135–146

Cooling increases search time

Anisopteromalus calandrae on Callosobruchus maculatus

Mobarakian, M., A. A. Zamani, J. Karmizadeh, N. Moeeny Naghadeh, and M. S. Emami 2014. Modelling Development of Callosobruchus maculatus and Anisopteromalus calandrae at Various Constant Temperatures Using Linear and Non-Linear Models. Biocontrol Science and Technology 24 (11): 1308–1320. (33.7 days developmental time at 25oC – 26.3 days at 30oC = 7.5 days slower so search time increased.)

Moosavi, Masoomeh, Nooshin Zandi-Sohani, and Ali Rajabpour 2000. Influence of Temperature on the Functional Response of Anisopteromalus calandrae (Hym.: Pteromalidae) to Different Population Densities of Callosobruchus maculatus (Col.: Bruchidae). IOBC-WPRS Bulletin 148: 173–80. (attack rate of 0.0327/hour at 25oC not significantly different from 0.0531/hour at 30oC.)

Anisopteromalus calandrae on Rhyzopertha dominica

Faroni, L. R., and F. Garcia-Mari. 1992. Influence of temperature on the biological parameters of Rhyzopertha dominica (F.). (Influencia de la temperatura sobre los parametros biologicos de Rhyzopertha dominica (F.).). Boletin de Sanidad Vegetal, Plagas 18: 455-467. (48.1 days for development of fourth instar at 24oC minus 28.1 days at 32oC = 20 days slower so search time increased.)

Rahman, Md Moshfikur, and W. Islam. 2019. Temperature and Host Dependent Functional Response of Anisopteromalus calandrae (How.) and Choetospila elegans (Westw.) Parasitods in Parasitizing Wheat Infesting Rhyzopertha dominica (F.)(Coleoptera: Bostrichidae). Bangladesh Journal of Zoology 47 (1): 41–47. (Attack rates were lower at 25oC than at 30oC)

Anisopteromalus calandrae on Sitophilus zeamais

Throne, J. E. 1994. Life history of immature maize weevils (Coleoptera: Curculionidae) on corn stored at constant temperature and relative humidities in the laboratory. Environ. Entomol. 23: 1459-1471. (40.2 days for development at 25oC minus 31.9 days at 30oC = 8.3 days slower and search time increased.)

Smith, L. 1994. Temperature Influences Functional-Response of Anisopteromalus calandrae (Hymenoptera, Pteromalidae) Parasitizing Maize Weevil Larvae in Shelled Corn. Annals of the Entomological Society of America 87(6): 849–855. (Attach rates were same at 25oC and 30oC.)

Cephalonomia tarsalis on Oryzaephilus surinamensis

Beckett, S. J. & Evans, D. E. 1999. The demography of Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) on kibbled wheat. Journal of Stored Product Research 30: 121-137. (34.2 days developmental time at 25oC minus 22.4 days at 30oC = 11.8 days slower so search time is increased.)

Lukas, Jan. 2005. Temperature Dependent Functional Response of Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae). In Biocontrol of Arthropod Pests in Stored Products. Proceedings of the 6th meeting of Working Group IV of the COST Action 842 edited by L. S. Hansen and M. Wakefield, 57–63. (Attack rate at 24oC was higher than that at 30oC.)

Cephalonomia waterstoni on Cryptolestes ferrugineus

Smith, L. B. 1965. The intrinsic rate of natural increase of Cryptolestes ferrugineus (Stephens) (Coleoptera, Cucujidae). J. Stored Prod. Res. 1: 35-49. (44.8 days developmental time at 25oC minus 27.3 days at 30oC = 17.5 days slower so search time is increased.) Flinn, P. W. 1991. Temperature-dependent functional response of the parasitoid Cephalonomia waterstoni (Gahan) (Hymenoptera: Bethylidae) attacking rusty grain beetle larvae (Coleoptera: Cucujidae). Environ. Entomol. 20: 872-876. (Attack rate at 25oC was the same as that at 30oC.)

Habrobracon hebetor on Plodia interpunctella

Na, J. H., and M. I. Ryoo. 1998. Effects of temperature on the life history of Indian meal moth (Pyralidae: Lepidoptera) on brown rice. Korean J. Appl. Entomol. 37:143-149. (62.3 days developmental time at 25oC minus 38.1 days at 32oC = 24.2 days slower so search time increased.)

Zhong, B. Z., Z. F. Xu, and W. Q. Qin. 2009. Influence of Temperature on Functional Response of Habrobracon hebetor (Hymenoptera: Braconidae) Attacking Larvae of Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Acta Entomologica Sinica 52(4): 395–400. (Habrobracon hebetor can parasitize more hosts within the 26 to 29°C temperature range.)

Lariophagus distinguendus on Sitophilus oryzae

Ryoo, M., and K. J. Cho. 1988. A Model for the Temperature-Dependent Developmental Rate of Sitophilus oryzae L (Coleoptera, Curculionidae) on Rice. J. Stored Prod. Res. 24: 79-82. (9.2 days fourth instar developmental time at 25oC minus 8.0 days at 32oC = 1.2 days slower so search time increased.)

Hong, Y. S., and Ryoo, M. I. 1991. Effect of temperature on the functional and numerical responses of Lariophagus distinguendus (Hymenoptera: Pteromalidae) to various densities of the host, Sitophilus oryzae (Coleoptera: Curculionidae). J. Econ. Entomol. 84: 837-840. (Search efficiency was not related to temperature.)

Theocolax elegans on Rhyzopertha dominica

Faroni, L. R., and F. Garcia-Mari. 1992. Influence of temperature on the biological parameters of Rhyzopertha dominica (F.). (Influencia de la temperatura sobre los parametros biologicos de Rhyzopertha dominica (F.).). Boletin de Sanidad Vegetal, Plagas 18: 455-467. (48.1 days fourth instar developmental time at 24oC minus 28.1 days at 32oC = 20 days slower so search time increased.)

Flinn, P. W., and Hagstrum, D. W. 2002. Temperature-mediated functional response of Theocolax elegans(Hymenoptera: Pteromalidae) parasitizing Rhyzopertha dominica (Coleoptera:Bostrichidae) in stored wheat. J. Stored Prod. Res. 38:185-190. (Functional response of Theocolax elegans parasitizing Rhyzopertha dominica is almost the same at 25 and 32oC.)

Rahman, Md Moshfikur, and W. Islam. 2019. Temperature and Host Dependent Functional Response of Anisopteromalus calandrae (How.) and Choetospila elegans (Westw.) Parasitods in Parasitizing Wheat Infesting Rhyzopertha dominica (F.)(Coleoptera: Bostrichidae). Bangladesh Journal of Zoology 47 (1): 41–47. (Attack rates were lower at 25oC than at 30oC)