Recent research on detection of hidden infestations

The challenge for insect detection is finding two infested kernels among the 25,000 kernels in a 500 gram rice sample (Throne and Pearson 2008). As many as 98% of internal feeding Rhyzopertha dominica may be missed when sieving to separate insects from the grain (Perez-Mendoza et al. 2005). Holding samples until adults emerge exposes internal feeding insects, or holding immatures until they become adults make species identification easier but this delays pest management decision.

Once a representative sample of commodity has been taken, a method of determining the number of insects in the samples is needed. Table 2.2 in Fundamentals of Stored Product Entomology gives 9 destructive and 15 non-destructive methods for extraction and detection insects. Throne and Pearson (2008) discuss some more recent insect detection methods including acoustic impact for insect damaged kernels (IDK) only, single kernel characterization system, digital x-ray and tomography and the cost of these as well as older methods. They also characterize the ideal detection method as quick (processing large sample in minute or two), automated, 80-100% accurate for all stages and species of insects (dead and live), rare false positives (classifying uninfested sample as infested) and cost effective. None of methods meet all criteria for an ideal detection method and only x-ray meets accuracy criteria. None of the rapid, automated methods can detect dead and live insects accurately, although, combining the single kernel characterization technologies (resistance and video imaging) may be useful. Processing time may be less important with long-term storage where follow-up is possible for questionable samples.

We provide many citations for more recent studies on insect detection. There were as many studies on acoustic detection between 2011 and 2021 as during the previous 100 years (Mankin et al. 2021).

References

Agha, M.K. Khedher, W.S. Lee, C. Wang, R.W. Mankin, A.R. Blount, R.A. Bucklin, N. Bliznyuk. 2017. Detection and prediction of Sitophilus oryzae infestations in triticale via visible and near-infrared spectral signatures. J. Stored Prod. Res. 72: 1-10.

Amoah, Barbara, David Hagstrum, Bhadriraju Subramanyam, James F. Campbell, M. Wes Schilling and Thomas W. Phillips. 2017.  Sampling methods to detect and estimate populations of Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) infesting dry-cured hams. J. Stored Prod. Res. 73: 98-108.

Atui, M. B., P. W. Flinn, S. M. N. Lazzari, and F. A. Lazzari. 2007. Detection of Rhyzopertha dominica larvae in stored wheat using ELISA: The impact of myosin degradation following fumigation. J. Stored Prod. Res. 43:156-159.

Bhuvaneswari, K., P. G. Fields, N. D. G. White, A. K. Sarkar, C. B. Singh, and D. S. Jayas. 2011. Image analysis for detecting insect fragments in semolina. J. Stored Prod. Res. 47:20-24.

Boniecki, P., H. Piekarska-Boniecka, K. Świerczyński, K. Koszela, M. Zaborowicz, and J. Przybył. 2014. Detection of the granary weevil based on X-ray images of damaged wheat kernels. J. Stored Prod. Res. 56:38-42.

Brabec, D., F. Dowell, J. Campbell and M. West 2017. Detection of internally infested popcorn using electrically conductive roller mills. J. Stored Prod. Res. 70: 37-43.

Brabec, D., T. Pearson, P. Flinn, and D. Katzke. 2010. Detection of internal insects in wheat using a conductive roller mill and estimation of insect fragments in the resulting flour. J. Stored Prod. Res. 46:180-185.

Chelladurai, V., K. Karuppiah, D. S. Jayas, P. G. Fields, and N. D. G. White. 2014. Detection of Callosobruchus maculatus (F.) infestation in soybean using soft X-ray and NIR hyperspectral imaging techniques. J. Stored Prod. Res. 57:43-48.

Curtis, R., A. Hobsonfrohock, G. Fenwick, and J. Berreen. 1981. Volatile Compounds from the Mite Acarus-Siro L in Food. J. Stored Prod. Res. 17:197-203.

Fornal, J., T. Jelinski, J. Sadowska, G. Stanislaw, J. Nawrot, A. Niewiada, J. R. Warchalewski, and W. Blaszczak. 2007. Detection of granary weevil Sitophilus granarius (L.) eggs and internal stages in wheat grain using soft X-ray and image analysis. J. Stored Prod. Res. 43:142-148.

Hubert, J., M. Nesvorna, and V. Stejskal. 2009. The efficacy of sieving, filth flotation and Tullgren heat extraction for detecting various developmental stages of Tribolium castaneum and Ephestia kuehniella in samples of wheat grain, flour and semolina. J. Stored Prod. Res. 45:279-288.

Jian, Fuji, Digvir S. Jayas, Paul G. Fields and Noel D.G. White. 2015. A new method to rapidly detect rusty grain beetle, Cryptolestes ferrugineus (Stephens), in stored grain. J. Stored Product Res. 63: 1-5.

Jian, Fuji, Sara Doak, Digvir S. Jayas, Paul G. Fields and Noel D.G. White. 2016. Comparison of insect detection efficiency by different detection methods. J. Stored Prod. Res. 69: 138-142.

Johnson, Joel B. 2020 An overview of near-infrared spectroscopy (NIRS) for the detection of insect pests in stored grains. J. Stored Prod. Res. 86, 101558

Kaliramesh, S., Chelladurai, V., Jayas, D.S., Alagusundaram, K., White, N.D.G., and Fields, P.G., 2013. Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging. Journal of Stored Products Research 52, 107-111.

Laopongsit, W., G. Srzednicki, and J. Craske. 2014. Preliminary study of solid phase micro-extraction (SPME) as a method for detecting insect infestation in wheat grain. J. Stored Prod. Res. 59:88-95.

Leelaja, B. C., Y. Rajashekar, and S. Rajendran. 2007. Detection of eggs of stored-product insects in flour with staining techniques. J. Stored Prod. Res. 43:206-210.

Manickavasagan, A., D. S. Jayas, and N. D. G. White. 2008. Thermal imaging to detect infestation by Cryptolestes ferrugineus inside wheat kernels. J. Stored Prod. Res. 44:186-192.

Mankin, R. W., D. W. Hagstrum, M. T. Smith, A. L. Roda, and M. T. K. Kairo. 2011. Perspective and Promise: A Century of Insect Acoustic Detection and Monitoring. Amer. Entomol. 57: 30–44.

Mankin, R. W., E. Jetter, B. Rohde, and M. Yasir. 2020. Performance of a Low-Cost Acoustic Insect Detector System with Sitophilus oryzae (Coleoptera: Curculionidae) in Stored Grain and Tribolium castaneum (Coleoptera: Tenebrionidae) in Flour. Journal of Economic Entomology 113 (6): 3004–3010.

Mankin, Richard, David Hagstrum, Min Guo, Panagiotis Eliopoulos, and Anastasia Njoroge. 2021. Automated Applications of Acoustics for Stored Product Insect Detection, Monitoring, and Management. Insects 12(3), 259.

Muller-Blenkle, C., U. Simon, I. Szallies, S. Prozell, M. Scholler, and C. Adler. 2022. Large-Scale Trapping and Acoustic Detection of Beetles in Grain Storage Using the Beetle Sound Tube-System. 13th Conference of the IOBC-WPRS Working Group on the Integrated Protection of Stored Products (IPSP), Barcelona, Spain 159: 12–17.

Muller-Blenkle, Christina, Ulrich Simon, Ralf Meyer, Isabell Szallies, Daniela Lorenz, Sabine Prozell, Matthias Scholler, and Cornel S. Eagles. 2023. A Method for the Acoustic Detection of Storage Pests and Their Challenges. Journal Fur Kulturpflanzen 75 (9–10): 235–247.

Nawrocka, A., E. Stepien, S. Grundas, and J. Nawrot. 2012. Mass loss determination of wheat kernels infested by granary weevil from X-ray images. J. Stored Prod. Res. 48:19-24.

Neethirajan, S., C. Karunakaran, D. S. Jayas, and N. D. G. White. 2007. Detection Techniques for Stored-Product Insects in Grain. Food Control 18(2): 157–62. X-ray and NIR spectroscopy methods are cost prohibitive and current NIR instrumentation requires complex operating procedures and calibrations.

Nouri, Behzad, Kobra Fotouhi, Seyed Saeid Mohtasebi, Amin Nasiri and Seyed Hosein Goldansaaz 2019. Detection of different densities of Ephestia kuehniella pest on white flour at different larvae instar by an electronic nose system. J. Stored Prod. Res. 84, 101522

Pearson, T., and D. L. Brabec. 2007. Detection of Wheat Kernels with Hidden Insect Infestations with an Electrically Conductive Roller Mill. Applied Engineering in Agriculture 23 (5): 639–45.

Pearson, Tom C., A. Enis Cetin, Ahmed H. Tewfik, and Ron P. Haff. 2007. Feasibility of impact-acoustic emissions for detection of damaged wheat kernels. Digital Signal Processing 17(3): 617-633.

Pearson, Tom C., Jarrad Prasifka, Dan Brabec, Ron Haff, and Brent Hulke. 2014. Automated Detection of Insect-Damaged Sunflower Seeds by X-Ray Imaging. Applied Engineering in Agriculture 30 (1): 125–31.

Pearson, T. C., D. L. Brabec, and C. R. Schwartz. 2003. Automated Detection of Internal Insects Infestations in Whole Wheat Kernels Using a Perten SKCS 4100. Applied Engineering in Agriculture 19: 727–733.

Perez-Mendosa, J., P. W. Flinn, J. F. Campbell, D. W. Hagstrum and J. E. Throne. 2004. Detection of stored-grain insect infestations in wheat transported in railroad hopper-cars. J. Econ. Entomol. 97: 1474-1483.

Perez-Mendoza, J., J.E. Throne, F.E. Dowell and J.E. Baker 2003 Detection of insect fragments in wheat flour by near-infrared spectroscopy J. Stored Prod. Res. 39: 305-312

Perez-Mendoza, J., JE Throne, EB Maghirang, FE Dowell, and JE Baker. 2005. Insect Fragments in Flour: Relationship to Lesser Grain Borer (Coleoptera : Bostrichidae) Infestation Level in Wheat and Rapid Detection Using near-Infrared Spectroscopy. Journal of Economic Entomology 98(6): 2282–2291.          

Piasecka-Kwiatkowska, D., J. Nawrot, M. Zielińska-Dawidziak, M. Gawlak, and M. Michalak. 2014. Detection of grain infestation caused by the granary weevil (Sitophilus granarius L.) using zymography for α-amylase activity. J. Stored Prod. Res. 56:43-48.

Renuka, V.V.L., Totan Adak, Rakesh Ranjan Nayak, Naveenkumar Basanagouda Patil, … and Prakash Chandra Rath 2023. Natural colours could be used as dye to identify Tribolium castaneum (Herbst) eggs. J. Stored Prod. Res. 101, 102084

Sciarretta, Andrea, and Pasquale Calabrese. 2019. Development of Automated Devices for the Monitoring of Insect Pests. Current Agriculture Research Journal 7(1): 19–25.

Senthilkumar, T., D. S. Jayas, N. D. G. White, M. S. Freund, C. Shafai, and D. J. Thomson. 2012. Characterization of volatile organic compounds released by granivorous insects in stored wheat. J. Stored Prod. Res. 48:91-96.

Shao, Xiaolong, Chao Ding, Jitendra Paliwal, and Qiang Zhang. 2018. Detection of Hidden Insect Sitophilus oryzae in Wheat by Low-Field Nuclear Magnetic Resonance. p. 1029–1037. In Proceedings of the12th International Working Conference on Stored Product Protection (IWCSPP), October 7-11, 2018, Berlin, Germany

Shen, Yufeng, Huiling Zhou, Jiangtao Li, Fuji Jian, and Digvir S. Jayas. 2018. Detection of Stored-Grain Insects Using Deep Learning. Computers and Electronics in Agriculture 145: 319–325.

Singh, C. B., D. S. Jayas, J. N. D. G. Paliwal, and N. D. G. White. 2009. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. Journal of stored products research 45(3): 151-158.

Singh, Chandra B., Digvir S. Jayas, Jitendra Paliwal, and Noel DG White. 2010. Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Computers and electronics in agriculture 73(2): 118-125.

Solà, Mireia, Jonathan G. Lundgren, Nuria Agustí, Jordi Riudavets 2017. Detection and quantification of the insect pest Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in rice by qPCR. J. Stored Prod. Res. 71: 106-111.

Strelec, I., L. Kucko, D. Roknic, V. Mrsa, and Z. Ugarcic-Hardi. 2012. Spectrofluorimetric, spectrophotometric and chemometric analysis of wheat grains infested by Sitophilus granarius. J. Stored Prod. Res. 50:42-48.

Sun, K., Y. W. Qian, V. Spicer, N. D. G. White, and D. S. Jayas. 2013. Feasibility of protein fingerprinting technology for detecting Tribolium castaneum (Herbst) insect fragments in wheat flour. J. Stored Prod. Res. 55:36-40.

Throne, J. E., and T. C. Pearson. 2008. Detection of insects in grain. p. 123-136. In Mancini, R., M.O.Carvalho, B. Timlick, and C. Adler (eds.), Contribution for integrated management of stored rice pests. Handbook. Instituto de investigacao Cientifica Tropical, Lisbon, Portugal

Tian, Xuemei, Jiarong Hao, Fenghua Wu, Hao Hu, … and Tao Zhang 2022. 1-Pentadecene, a volatile biomarker for the detection of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) infested brown rice under different temperatures. J. Stored Prod. Res. 97, 101981

Toews, MD, TC Pearson, and JF Campbell. 2006. Imaging and Automated Detection of Sitophilus oryzae (Coleoptera : Curculionidae) Pupae in Hard Red Winter Wheat. Journal of Economic Entomology 99(2): 583–592.

Villaverde, M. L., M. P. Juarez, and S. Mijailovsky. 2007. Detection of Tribolium castaneum (Herbst) volatile defensive secretions by solid phase micro extraction-capillary gas chromatography (SPME-CGC). J. Stored Prod. Res. 43:540-545.

Zhang, Hongmei and Jun Wang 2007 Detection of age and insect damage incurred by wheat, with an electronic nose J. Stored Prod. Res. 43: 489-495

Zhang, S., H. Zhai, S. Huang, and J. Cai. 2014. A site-directed CO2 detection method for monitoring the spoilage of stored grains by insects and fungi in Chinese horizontal warehouses. J. Stored Prod. Res. 59:146-151.

Zhou, Molin, Ragab Khir, Zhongli Pan, James F. Campbell, … and Zhuoyan Hu 2021. Feasibility of detection of infested rice using an electronic nose. J. Stored Prod. Res. 92, 101805