Water on Stored-Product Insects

Fundamentals of Stored-Product Entomology book includes references on the attraction of water (high relative humidity, p. 45-52) and the effects of water on development (p. 100) and egg production (p. 108).  The following list gives additional references on the attractiveness of water, water balance and its influence on life history.

Insects avoid desiccation by feeding on food with high moisture, production of metabolic water, drinking water, finding moist environments and in some cases adsorbing water vapor. As the water content of diet decreases from 12 to 1%, last instar Galleria mellonella larvae reduce growth rate and increase production of metabolic water (Jindra and Sehnal. 1990). The importance of drinking water has been studied for Amyelois transitella, Cadra cautella, Callosobruchus maculatus, Cheyletus malaccensis, Dermestes lardarius, Gibbium psylloides, Ptinus tectus and Sitophilus zeamais. Mezium affine drink water but are unable to absorb water vapor from the air except at saturation (Benoit et al. 2005).

Species of insects and mites adsorbing water vapor from the unsaturated air include Acarus siro down to 71%, Glycyphagus domesticus down to 75%, Lasioderma serricorne down to 43%, Liposcelis bostrychophilus & Liposcelis rufus down to 58%, Ptinus fur, Tenebrio molitor and Tinea pellionella. Prolonged water balance by adult females of Mezium affine in the absence of food and water for 3 months were a result of impermeable cuticle and inactivity (Benoit et al. 2005). There are many morphological barriers to water loss. For example, spider beetles have their elytra fused and spiracles open internally into a subelytral cavity that traps water. Also, hair covering the beetle’s body is a humidified boundary layer.

High humidity increases moisture content of commodities and low humidity decreases their moisture content (see moisture, drying on JSPR categorized page). Developmental time of the feeding larval stage decreases as moisture content of food increases, but moisture content of food generally has little or no effect on developmental time of non-feeding egg or pupal stages (see Life History page for additional references).

Loss of water and mortality of Cadra cautella pupae were high at 97-98% carbon dioxide that is high enough to reduce oxygen level (Navarro and Calderon 1973). With Callosobruchus maculatus, low oxygen (hypoxia) stops larval feeding and the production of metabolic water causing desiccation and death (Murdock et al. 2012).

Appel, A.G., Moar, W.J. and Tanley, M.J., 1999. Water loss and mortality of adult cowpea weevils (Coleoptera: Bruchidae) exposed to desiccants and desiccating environments. Environ. Entomol. 28: 979-982.

Athanassiou, C. 2001. Influence of killing agents and water on the capture of six Coleoptera species in probe traps. Phytoparasitica 29: 367-372.

Benoit, J., J. Yoder, E. Rellinger, J. Ark, and G. Keeney. 2005. Prolonged maintenance of water balance by adult females of the American spider beetle, Mezium affine Boieldieu, in the absence of food and water resources. J. Insect Physiol. 51:565-573.

Bhattacharya, B., A. Barik, and T. C. Banerjee. 2003. Bioenergetics and water balance in Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) larval populations. Oriental Insects 37: 423-437.

Biemont, J. C., G. Chauvin, and C. Hamon. 1981. Ultrastructure and resistance to water loss in eggs of Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Journal of Insect Physiology 27(10): 667-673, 675-679.

Boucher, L. and Huignard, J. 1987. Transfer of male secretions from the spermatophore to the female insect in Caryedon serratus (Ol.): analysis of the possible trophic role of these secretions. Journal of Insect Physiology, 33(12): 949-957.

Bowditch, T. G. and J. L. Madden. 1996. Spatial and temporal distribution of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) in a confectionary factory: causal factors and management implications. J. Stored Prod. Res. 32: 123-130.

Burks, Charles S. 2014. Effects of Delayed Mating and Access to Water on Oviposition and Longevity in Female Amyelois transitella. International Journal of Insect Science 6: 89.

Chauvin, G. 1977. Contributional etude des insectes keratophages (Lepidoptera: Tineidae): leurs principales adaptation sa la vie en milieu sec. (Contributional keratophages study of insects (Lepidoptera: Tineidae): their main adaptation its life in dry conditions). Thesis, Universite de Rennes, France

Chauvin, G. 1977. Effets de lassechement du milieu sur l equilibre hydrique et la nutrituin de Tinea pellionella L. (Lepidoptera Tineidae). (Effects of drying of the medium on the water balance and nutrituin of Tinea pellionella L. (Lepidoptera Tineidae)) Bull. Soc. Zool. Fr. 120: 320-321.

Chauvin G. and Gueguen A. 1978 Developpement larvaire et bilan d’utilisation d’energie en fonction de l’hygrometrie chez Tinea pellionella L. (Lepidoptera: Tineidae). (Larval development and energy utilization in relation to hygrometry in Tinea pellionella L. (Lepidoptera: Tineidae)) Can. J. Zool. 56: 2176-2185.

Chauvin, G., G. Vannier, and A. Gueguen. 1979. Larval case and water balance in Tinea pellionella. J. Insect Physiol. 25:615-619.

Chauvin G. and Vannier G. 1980. Absorption d’eau atmosphérique par la larve deTinea pellionella L.(Lepidoptera: Tineidae (Absorption of water vapour by the larvae of Tinea pellionella L. (Lepidoptera: Tineidae)) Experientia 36: 87-88.

Chauvin, G. and Guy Vannier 1983. Effets d’une augmentation de la temperature ambiante sur la transpiration des larves, nymphes et adultes de Tinea pellionella L. (Lepidoptera: Tineidae) places en atmosphere seche. (Effects of an increase in ambient temperature on the transpiration of larvae, nymphs and adults of Tinea pellionella L. (Lepidoptera: Tineidae) places in dry atmosphere) Bollettino di Zoologia/ Italian Journal of Zoology 50(3-4): 257-262.

Chauvin, Georges, and Guy Vannier. 1985. Exigence hydrique et aptitude à coloniser un biotope chez les lépidoptères tinéides kératophages. (Water requirement and ability to colonize a biotope in lepidopteran tineid keratophages) Bulletin de la Société zoologique de France 110(3): 331-337.

Chow, Y., D. Yen, and S. Lin. 1977. Water, a powerful attractant for gravid females of Plodia interpunctella and Cadra cautella. Experientia 33: 453-455.

Dendy, A. 1918. Observations on the attraction of certain grain beetles, especially weevils; by water. (Report no. 3). Reports of the Grains Pests (War) Committee, Royal Society 17-18.

Devine, T. L. 1977. Incorporation of tritium from water into tissue components of the booklouse, Liposcelis bostrychophilus. Journal of Insect Physiology 23(10): 1315-1321

Devine, T. L. 1982. The dynamics of body water in the booklouse Liposcelis bostrychophilus (Badonnel). J. Exp. Zool. 222: 335-347.

Drickamer, Lee C. 1971. The Humidity Responses of Tribolium Confusum Jacquelin Duval in Wheat Flour, Sand, and Air. Ohio Journal of Science 71(3): 149-158.

Dunbar, B.S. and Winston, P.W. 1975. The site of active uptake of atmospheric water in larvae of Tenebrio molitor. J. Insect Physiol. 21: 495–500.

Edvardsson, M. 2007. Female Callosobruchus maculatus mate when they are thirsty: resource-rich ejaculates as mating effort in a beetle. Anim. Behav. 74: 183–188.

El Sayed, M. T. 1935. On the biology of Araecerus fasciculatus de Geer (Col., Anthribidae), with special reference to the effects of variations in the nature and water content of the food. Ann. Appl. Biol. 22: 557-577.

Ewer, D. W., and R. F. Ewer. 1942. The biology and behaviour of Ptinus tectus Boie. (Coleoptera, Ptinidae), a pest of stored products. Ill. The effect of temperature and humidity on oviposition, feeding and duration of life cycle. J. Exp. BioI. 18 (3): 290-305.

Fraenkel, G. and Blewett, M. 1944. The utilization of metabolic water in insects. Bulletin of Entomological Research 35: 127-139.

Gothilf, S. 1969. The biology of the carob moth Ectomyelois ceratoniae Zell. in Israel. part 2. Effect of food, temperature and humidity on development. Israel Journal of Entomology 4: 107-116.

Guedes, N. M. P., L. S. Braga, C. A. Rosi-Denadai, and R. N. C. Guedes. 2015. Desiccation resistance and water balance in populations of the maize weevil Sitophilus zeamais. J. Stored Prod. Res. 64: 146-153. (Sitophilus zeamais drink water when dehydrated.)

Hagstrum, D. W. and Tomblin, C. F.  1975.  Relationship between water consumption and oviposition by Cadra cautella (Lepidoptera: Phycitidae).  J. Ga. Entomol. Soc. 10: 358‑363.

Hansen, L.L., Ramlov, H. and Westh, P. 2004. Metabolic activity and water vapour absorption in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae): real-time measurements by two-channel microcalorimetry. Journal of Experimental Biology 207: 545–552.

Hansen, Lars L., Peter Westh, Jonathan C. Wright, and Hans Ramløv. 2006. Metabolic changes associated with active water vapour absorption in the mealworm Tenebrio molitor L.(Coleoptera, Tenebrionidae): A microcalorimetric study. Journal of insect physiology 52(3): 291-299.

Harano, T. 2012. Water Availability Affects Female Remating in the Seed Beetle, Callosobruchus chinensis. Ethology 118(10): 925-931.

Hickin, N. E. 1942. Food and water requirements of Ptinus tectus Boieldieu (Coleoptera, Ptinidae). Royal Entomological Society of London. Proceedings 17: 99-108.

Hickin, N. E. 1941. Food and water requirements of Gibbium psylloides Czemp (Coleopt., Ptinidae), with some notes on its biology. Entomologist 74: 265-267.

Jacob, T. A. and D. A. Fleming. 1982. Observations on the influence of free water on the fecundity and longevity of Dermestes lardarius L. (Col., Dermestidae). Entomol. Mon. Mag. 118: 127-131.

Jindra, Marek and Frantisek Sehnal. 1990. Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella. Insect Biochem. 20(4): 389-395.

Knulle, W. 1962. Die Abhangigkeit Der Luftfeuchte-Reaktionen Der Mehlmilbe (Acarus-Siro L) Vom Wassergehalt Des Korpers. (The dependence of the humid reactions of the Acarus siro L of the water content of the body) Zeitschrift Fur Vergleichende Physiologie 45: 233-246.

Knulle, W. 1965. Die sorption und tranpiration des wasserdampfes bei der mehlmilbe (Acarus siro L.) (The sorption and siro transpiration of water vapor in the flour mite (Acarus siro L.)). Z. Vergleichande Physiol. 49: 586-604.

Knulle, W., and Spadafora, R.R. 1969. Water Vapor Sorption and Humidity Relationships in Liposcelis (Insecta-Psocoptera). J. Stored Prod. Res. 5: 49-55.

Knulle, W., and Spadafora, R.R. 1970. Occurrence of Water Vapor Sorption from Atmosphere in Larvae of some Stored-Product Beetles. J. Econ. Entomol. 63: 1069-1070.

Livingstone, E. M., and W. D. Reed. 1940. Water vapor as a factor affecting the survival of Ephestia elutella and Lasioderma serricorne at reduced pressure. Ann. Entomol. Soc. Am. 33: 583-587.

Machin, J. 1975 Water balance in Tenebrio molitor, L. larvae; the effect of atmospheric water absorption. J Comp Physiol 101: 121–132

Machin, J. 1976. Passive exchange during water vapor absorption in mealworms (Tenebrio molitor): a new approach to studying the phenomenon. J Exp Biol 65: 603–615

Malia, H. A. E., C. A. Rosi-Denadai, N. M. P. Guedes, G. F. Martins and Raul Narciso C. Guedes. 2016. Diatomaceous earth impairment of water balance in the maize weevil, Sitophilus zeamais. Journal of Pest Science DOI 10.1007/s10340-016-0732-0

McNamara ,K.B., Elgar, M.A. and Jones, T.M. 2008. A longevity cost of re-mating but no benefits of polyandry in the almond moth, Cadra cautella. Behav Ecol Sociobiol. 62: 1433–1440.

Mellanby, K. 1932. Effect of atmospheric humidity on the metabolism of the fasting mealworm (Tenebrio molitor L., Coleoptera). Proceedings of the Royal Society of London; Series B Biological Sciences 3: 376-390.

Mellanby, K. 1934. Site of loss of water from insects. Proceedings of the Royal Society of London; Series B Biological Sciences 116: 139-149.

Mellanby, K. and R. A. French. 1958. The importance of drinking water to larval insects. Entomologia Experimentalis et Applicata 1: 116-124.

Moitra, A. and A. Bhattacharya. 1990. Food as a source of metabolic water for Cadra cautella (Walker). Bulletin of grain technology 28:149-155.

Murdock, L.L., Margam, V., Baoua, L., Balfe, S. and Shade, R.E. 2012. Death by desiccation: effects of hermetic storage on cowpea bruchids. Journal Stored Products Research 49: 166 – 170.

Murray, D. R. P. 1968. The importance of water in the normal growth of larvae of Tenebrio molitor. Entomologia Experimentalis et Applicata 11: 149-168.

Nansen, C.; Dustin Davidson & Patrick Porter2009. Using water bottles for trapping of Indianmeal moths in stored peanuts. Entomologia Experimentalis et Applicata 133: 251–259.

Navarro, S. -. et al. 1973. Carbon dioxide and relative humidity: interrelated factors affecting the loss of water and mortality of Ephestia cautella (Walker) (Lepidoptera; Phycitidae). Israel J. Entomol. 8: 143-152.

Nicolson, Sue. 1992. Excretory function in Tenebrio molitor: fast tubular secretion in a vapour-absorbing insect. Journal of insect physiology 38(2): 139-146.

Ni, Xinzhi, Gunawati Gunawan, Steve L. Brown, Paul E. Sumner, John R. Ruberson, G. David Buntin, C. Corley Holbrook, R. Dewey Lee, Douglas A. Streett, James E. Throne, and James F. Campbell. 2008. Insect-attracting and antimicrobial properties of antifreeze for monitoring insect pests and natural enemies in stored corn. Journal of economic entomology 101(2): 631-636. (Anisopteromalus calandrae, Cephalonomia tarsalis, Plodia interpunctella, Sitophilus spp.)

Ni, Xinzhi, and C. C. Holbrook. 2006. Using nutrient solutions to trap the almond moth (Lepidoptera : Pyralidae) in a peanut shelling and storage facility. J. Entomol. Sci. 41:285-291.

Noble-Nesbitt, J. 1990. Cellular differentiation in relation to water vapour absorption in the rectal complex of the mealworm, Tenebrio molitor. Tissue and Cell 22: 925-940.

Norris, Maud J. 1934. Contributions towards the Study of Insect Fertility.—III. Adult Nutrition, Fecundity, and Longevity in the Genus Ephestia (Lepidoptera, Phycitidæ). Proceedings of the Zoological Society of London 104(2): 333-360.

Ouedraogo, P. A., J. P. Monge and J. Huignard. 1991. Importance of temperature and seed water-content on the induction of imaginal polymorphism in Callosobruchus maculatus. Entomologia Experimentalis et Applicata 59: 59-66.

Paul, F., Prozell, S.; Scholler, M. 2008. Monitoring naturlicher Feinde des Gemeinen Nagekafers Anobium punctatum (DeGeer, 1774) (Coleoptera: Anobiidae). Mitteilungen der Deutchen Gesellschaft fur Allgemeine und Angewandte Entomologie 16: 323-326. (Monitoring of natural enemies of the common gnawing beetle Anobium punctatum (DeGeer, 1774) (Coleoptera: Anobiidae)) (Yellow dishes with water and a bit of detergent attracted more of the parasitoid Spathius exarator than it host Anobium punctatum in museum)

Punzo, Fred, and Gail Huff. 1989. Comparative temperature and water relations and the effects of thermal acclimation on Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology Part A: Physiology 93(3): 527-533.

Rigaux, Marilyn, Haubruge, Eric and Fields, Paul G. 2001. Mechanisms for tolerance to diatomaceous earth between strains of Tribolium castaneum. Entomologia Experimentalis et Applicata 101: 33–39.

Rohitha Prasantha, B. D., C. Reichmuth, C. Adler, and D. Felgentreu. 2015. Lipid adsorption of diatomaceous earths and increased water permeability in the epicuticle layer of the cowpea weevil Callosobruchus maculatus (F.) and the bean weevil Acanthoscelides obtectus (Say) (Chrysomelidae). J. Stored Prod. Res. 64: 36-41.

Roth, Louis M. and Edwin R. Willis. 1951. The effects of desiccation and starvation on the humidity behavior and water balance of Tribolium confusum and Tribolium castaneum. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 118(2): 337-361.

Ryne, C., M. Ekeberg, P. Olsson, P. Valeur, and C. Lofstedt. 2002. Water revisited: a powerful attractant for certain stored-product moths. Entomol. Exp. Appl. 103: 99-103.

Ryne, C., P. Nilsson, and M. Siva-Jothy. 2004. Dietary glycerol and adult access to water: effects on fecundity and longevity in the almond moth. J. Insect Physiol. 50: 429-434.

Salin, C., P. Vernon, and G. Vannier. 1999. Effects of temperature and humidity on transpiration in adults of the lesser mealworm, Alphitobius diaperinus (Coleoptera : Tenebrionidae). J. Insect Physiol. 45: 907-914.

Sano-Fujii, I. 1984. Effect of bean water content on the production of the active form of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 20: 153-161.

Schmidt, H‐U. 1978. Die Aufnahme von Wasserdampf aus der Atmosphäre und die kritische Gleichgewichtsluftfeuchte der in Vorräten lebenden Raubmilbe Cheyletus malaccensis Oudemans, 1903 (Acari: Cheyletidae). (The absorption of water vapor from the atmosphere and the critical equilibrium air humidity of the predatory mites Cheyletus malaccensis Oudemans, 1903 (Acari: Cheyletidae)) Journal of Applied Entomology 87(1-4): 122-131.

Seethaler, H., W. Knulle, and T. L. Devine. 1980. Water vapour intake and body water (3HOH) clearance in the housemite Glycyphagus domesticus. Acarologia 21(3/4): 442-450.

Serdjukova, I. R. 1989. Water vapour absorption in Anobiidae larvae (Coleoptera). Zoologichesky Zhurnal 68: 65-70.

Simmons, P., and G. W. Ellington. 1924. Biology of the Angoumois grain moth–Progress report. J. Econ. Entomol. 17: 41-45.

Solomon ME 1966 Moisture gains, losses and equilibria of flour mites, Acarus siro L., in comparison with larger arthropods. Entomol Exp Appl 9: 25–41

Stubbs, M., and R. Griffin. 1983. The Response of Oryzaephilus-Surinamensis (L) (Coleoptera, Silvanidae) to Water. Bull. Entomol. Res. 73: 587-595.

Tamhankar, A.J., and M.R. Harwalkar. 1994. Comparision of a dry and a water trap for monitoring potato tubermoth, Phthorimaea operculella Zeller. Entomology 19: 163–165.

Trematerra, P. and S. Savoldelli. 2013. The use of water traps and presence of spermatophores to evaluate mating disruption in the almond moth, Ephestia cautella, during exposure to synthetic sex pheromone. Journal of Pest Science 86: 227-233.

Urs, K.C.D., and T. L. Hopkins. 1973. Effect of moisture on growth rate and development of two strains of Tenebrio molitor L. (Coleoptera, Tenebrionidae). J. Stored Prod. Res. 8: 291-297. (Tenebrio molitor had extra instars as a result of drinking water)

Ursprung, C., den Hollander, M. and Gwynne D.T. 2009. Female seed beetles, Callosobruchus maculatus, remate for male-supplied water rather than ejaculate nutrition. Behav Ecol Sociobiol. 63: 781–788.

Watters, F. L. et al. 1957. A water trap for detecting insects in stored grain. Can. Entomol. 89: 188-192.

Watters, F. L. 1964. Locomotor activity of the hairy spider beetle at the surface of stored wheat. Journal of Economic Entomology 57(6): 889-891.

Yoder, Jay A., Michael J. Chambers, Justin L. Tank, George D. Keeney, and James Miller. 2009. High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbium aequinoctiale. Journal of insect science 9(1): 68.

Yoder, A., Christensen. S. and Keeney D. 2010. Enhanced tolerance to water stress in adults of the South India strain of the seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae), as a product of large body size. Eur. J. Entomol.5759: 271–275.

Leave a comment