Research on cold plasma for stored product pest management

Cold plasma fumigation kills insects and fungi, and degrades insecticides and mycotoxins. Cold plasma ozone generators utilize oxygen as the input source to produce ozone with a concentration of about 5-7% (https://absoluteozone.com/ozone-library/ozone-terminology/). Recent technology can produce ozone with a concentration of up to 20% or more on-site (https://www.primozone.com/wp-content/uploads/2020/11/Primozone-General-.pdf). Among the reactive oxygen species, ozone is a powerful oxidant, second only to the hydroxyl radical. Effectiveness of cold plasma has been demonstrated in grain storage bins, screw conveyors, flour mills and cured meat factories. Health risk of cold plasma and effects of cold plasma on commodity quality have been examined. Use of monitoring, predictive models and recirculation to improve ozone fumigation are discussed by Boopathy et al. 2022, Campabadal et al. 2013 and Hardin et al. 2010. Several patents have been issued for ozonation of grain (Decker et al. 2009, Johnson et al. 2017, 2018).

Papers on ozone were first published in 1980 and in 2001 on cold plasma (Table Number of published papers per insect species and time period, references with * not included in Table). Reference lists includes 98 papers on ozone and 30 papers on cold plasma. Only 10 of the 30 papers on cold plasma were published prior to 2020. Separate reference lists are provided for degradation of insecticide and reviews on control of fungi and degradation of mycotoxins. Papers by Pandiselvam et al. 2020, Aidoo et al. 2023 and Wang et al. 2019 provide long lists of studies on insecticide degradation by ozone with % reduction showing that this has been studied more frequently for fresh fruits and vegetables than for stored grain. Given the number of papers cited by reviews, the effects of cold plasma and ozone in particular on fungi and their mycotoxins may have been studied more than their effects on insect control and insecticide residue degradation. Papers on ozone have been published for 26 insect and mite species and on cold plasma for 11 insect species. For both ozone and cold plasma the most studied species is Tribolium castaneum (32 out 140 studies). Majority (78%) of studies were for only 8 insect species.

Ozone

Abdelfattah, Nilly AH, Asmaa M. Marie, and Shams Fawki. 2023. The Effect of Ozone on Rhyzopertha dominica, Tribolium castaneum, and Technological Properties of Wheat Flour. Ozone: Science & Engineering 45(5): 488-502.

Abo-El-Saad, M. M., H. A. Elshafie, A. M. Al Ajlan, and I. A. Bou-Khowh. 2011. Non-Chemical Alternatives to Methyl Bromide against Ephestia cautella (Lepidoptera: Pyralidae): Microwave and Ozone. Agric. Biol. J. N. Amer. 2: 1222–1231.

Abreu, Artur Oliveira, Leda Rita D’Antonino Faroni, Marcus Vinicius de Assis Silva, Adalberto Hipólito de Sousa, …, and Gutierres Nelson Silva. 2022. Ozone as an Alternative Fumigant for Controlling Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) in Cowpea Beans. J. Stored Prod. Res. 97, 101969

Al-Emara, Mohammed S., Aqeel A. Alyousuf, and Mohammed H. Abass. 2021. Efficacy of Ozone Gas against All Stages of Red Flour Beetle, Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae) at Different Temperatures and Exposure Periods. Basrah Journal of Agricultural Sciences 34(2): 240–252.

Amoah, Barbara A., and Rizana M. Mahroof. 2018. Susceptibility of the Life Stages of Cigarette Beetle, Lasioderma serricorne (F.) (Coleoptera: Anobiidae) to Ozone. Journal of Stored Products Research 78: 11–17.

Amoah, Barbara A., and Rizana M. Mahroof. 2019. Ozone as a Potential Fumigant Alternative for the Management of Sitophilus oryzae (Coleoptera: Curculionidae) in Wheat. Journal of Economic Entomology 112 (4): 1953–1963. O3 gas in wheat and rice silos controlled Sitophilus oryzae.

Anandakumar, S., S. Shubhashini, K. Alagusundaram, and C. V. Abirami. 2016. Effect of Ozone Fumigation on Lasioderma serricorne (F.) and Quality of Turmeric Rhizome. Indian Journal of Entomology 78 (special): 126–32.

Athanassiou, C. G., N. G. Kavallieratos, A. A. Isikber, and M. S. Oztekin. 2014. Insecticidal Effect of Ozone against Different Life Stages of Plodia interpunctella, Tribolium confusum, Cryptolestes ferrugineus and Oryzaephilus surinamensis. IOBC-WPRS Bulletin 98: 224.

Athanassiou, C. G., D. N. Milonas, and C. J. Saitanis. 2008. Insecticidal Effect of Ozone against Rhyzopertha Dominica (F.) (Coleoptera: Bostrychidae), Sitophilus Oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum Jacquelin Du Val (Coleoptera: Tenebrionidae): Influence of Commodity. In Proceedings of the 8th International Conference on Controlled Atmosphere and Fumigation in Stored Products edited by et al Daolinc, 61–71. Sichuan Publishing House of Science & Technology.

Bi, J., M. Wen, X. Guo, H. Dai, Y. He, and Z. Shu. 2022. Ozone Reduces Lifespan and Alters Gene Expression Profiles in Rhyzopertha dominica (Fabricius) 3. Biotech. 12(12), 345

Bonjour EL, Opit GP, Hardin J, Jones CL, Payton ME, Beeby RL 2011. Efficacy of ozone fumigation against the major grain pests in stored wheat. J Econ Entomol 104: 308–316 Cryptolestes ferrugineus, Liposcelis bostrychophila,  Liposcelis paeta, Oryzaephilus surinamensis, Tribolium castaneum, Plodia interpunctella, Rhyzophilus dominica, Sitophilus oryzae

Boopathy, Bhavadharini, Anbarasan Rajan, and Mahendran Radhakrishnan. 2022. Ozone: an alternative fumigant in controlling the stored product insects and pests: a status report. Ozone: Science & Engineering 44(1): 79-95. 100% mortality was achieved in most insect species.

Byun, M. W., H. S. Yook, and O. J. Kwon. 1997. Comparative Effects of Gamma Irradiation and Ozone Treatment on Hygienic Quality of Aloe Powders. Int. J. Food Sci. Technol. 32: 221–27.

Campabadal, Carlos A. 2012. Using Ozone to Treat Grain. Milling Journal 20(3): 18–20.

Campabadal, Carlos A. 2013. Ozonation Systems As a Non-Chemical Alternative for Stored Grain Protection. PhD diss., Purdue University

Campabadal, C. A., D. E. Maier, and L. J. Mason. 2013. Efficacy of fixed bed ozonation to control insects in stored bulk grain. App. Eng. in Agric. 29(5): 1- 12.

Decker, R Scott, Dale A Eltiste, and Ronald T Noyes. 2009. Fumigation and Sanitation of Biological Products Storage Systems Using Ozone, U.S. Patent Application 12/240,727, filed May 7, 2009.

Dong, Xue. 2022. Response of Stored Grain Insect Pests and Barley to Ozone Treatment. PhD diss., Murdoch University, Perth, Western Australia. Rhyzopertha dominica, Tribolium castaneum

Dong, Xue, Manjree Agarwal, Yu Xiao, Yonglin Ren, Garth Maker, and Xiangyang Yu. 2022. Ozone Efficiency on Two Coleopteran Insect Pests and Its Effect on Quality and Germination of Barley. Insects 13(4), 318 Rhyzopertha dominica, Tribolium castaneum

E, Xinyi, Beibei Li, and Bhadriraju Subramanyam. 2019. Efficacy of Ozone against Adults and Immature Stages of Phosphine Susceptible and Resistant Strains of Rhyzopertha dominica. Journal of Stored Products Research 83: 110–116.

E, Xinyi, Bhadriraju Subramanyam, and Beibei Li. 2017. Efficacy of Ozone against Phosphine Susceptible and Resistant Strains of Four Stored-Product Insect Species. Insects 8(2): 42. Tribolium castaneum, Oryzaephilus surinamensis, Sitophilus zeamais, Sitophilus oryzae

Erdman, HE 1980. Ozone toxicity during ontogeny of two species of flour beetles, Tribolium confusum and T. castaneum. Environ Entomol 9:16–17

Erdman, H. E. 1980. population structural changes in single species of flour beetles with ozone as an environmental factor. Researches on Population Ecology 22: 211–20.

Grisales, L. P. V. 2013. Toxicidade e Respostas Comportamentais Ao Ozônio Em Populações de Rhyzopertha dominica. (Toxicity and Behavioral Responses to Ozone in Populations of Rhyzopertha dominica). Universidade Federal de Viçosa.

Hamza, Amany M. 2012. Efficacy and Safety of Non-Traditional Methods as Alternatives for Control of Sitophilus oryzae (L.)(Coleoptera: Curculionidae) in Rice Grains. Egyptian Journal of Biological Pest Control 22(2): 103–108.

Hansen, Peer. 2010. Ozonation – What Is the Potential? Application of Ozone as an Alternative to Traditional Fumigants. In International European Symposium on Stored Product Protection “Stress on chemical products” 429 edited by C. Reichmuth and M. Schoeller, p. 64–68. Julius-Kühn-Archive.

Hansen LS, Hansen P, and Jensen KV 2012. Lethal doses of ozone for control of all stages of internal and external feeders in stored products. Pest Manag Sci 68: 1311–1316 Oryzaephilus surinamensis, Tribolium castaneum, Stegobium paniceum, Rhyzopertha dominica, Ephestia kueniella, Sitotroga cerealella, Sitophilus, Tribolium confusum, Plodia interpunctella

Hansen, Lise Stengaard, Peer Hansen, and Karl-Martin Vagn Jensen. 2013. Effect of Gaseous Ozone for Control of Stored Product Pests at Low and High Temperature. Journal of Stored Products Research 54: 59–63.

Hardin JA, Jones CL, Bonjour EL, Noyes RT, Beeby RL, Eltiste DA, and Decker S 2010. Ozone fumigation of stored grain; closed loop recirculation and the rate of ozone consumption. J Stored Prod Res 46:149–154

Holmstrup, Martin, Jesper Givskov Sorensen, Lars-Henrik Heckmann, Stine Slotsbo, Peer Hansen, and Lise Stengaard Hansen. 2011. Effects of Ozone on Gene Expression and Lipid Peroxidation in Adults and Larvae of the Red Flour Beetle (Tribolium castaneum). Journal of Stored Products Research 47(4): 378–384.

Husain, M., K. G. Rasool, M. Tufail, A. M. Alhamdan, K. Mehmood, and A. S. Aldawood. 2015. Comparative Efficacy of CO2 and Ozone Gases Against Ephestia cautella (Lepidoptera: Pyralidae) Larvae Under Different Temperature Regimes. Journal of Insect Science 15(1), 126

Ibrahim, R. A., and S. S. Al-Ahmadi. 2014. Utilization of Ozone to Control Potato Tuber Moth, Phthorimaea operculella (Lepidoptera: Gelechiidae), in Storage. African Entomology 22(2): 330–36.

Ingegno, Barbara L., and Luciana Tavella. 2021. Ozone Gas Treatment against Three Main Pests of Stored Products by Combination of Different Application Parameters. J. Stored Prod. Res. 95, 101902 Lasioderma serricorne, Plodia interpunctella, Tribolium castaneum

Isikber, A. A., S. Oztekin, R. Ulusoy, S. Ozsoy, and A. Karci. 2007. Effectiveness of Gaseous Ozone Alone and in  Combination with Low Pressure or Carbon Dioxide against Ephestia kuehniella  (Zell.)(Lepidoptera: Pyralidae) at Short Exposure Time. IOBC/Wprs Bulletin 30 (2): 205–213.

Isikber, A. A., and S. Öztekin. 2008. Susceptibility of Life Stages of Tribolium confusum Du Val. to Gaseous Ozone. IOBC/Wprs Bulletin 40: 273–79.

Isikber AA, and Oztekin S 2009. Comparison of susceptibility of two stored-product insects, Ephestia kuehniella Zeller and Tribolium confusum du Val to gaseous ozone. J Stored Prod Res 45:159–164

Işikber, A. A., and S. Öztekin. 2012. Susceptibility of Two Stored Product Insects, Ephestia kuehniella Zeller and Tribolium confusum Jacquelin Du Val to Gaseous Ozone. IOBC-WPRS Bulletin 81: 227.

Isikber, Ali A., and Christos G. Athanassiou. 2015. The Use of Ozone Gas for the Control of Insects and Micro-Organisms in Stored Products. Journal of Stored Products Research 64: 139–145.

Jian, Fuji, Digvir S. Jayas, and Noel D. G. White. 2013. Can Ozone Be a New Control Strategy for Pests of Stored Grain? Agricultural Research 2(1): 1–8.

Jamieson, L. E., S. K. Wimalaratne, B. Bycroft, K. van Epenhuijsen, B. Page, N. E. M. Page-Weir, A. Chhagan, D. Brash, D. Rankin, and F. Zulhendri. 2009. Feasibility of Ozone for Treating Sea Containers. Ministry of Agriculture and Forestry (MAF) Biosecurity New Zealand (Now Ministry for Primary Industries) Technical Paper No: 2010/01, 73 Pp

Johnson, Kevin C., Lynn Johnson, Delron E. Albert, and Vane Case. 2017. Systems and methods for ozone treatment of toxin in grain. U.S. Patent 9,808,020, issued November 7, 2017.

Johnson, Kevin C., Lynn Johnson, Delron E. Albert, and Vane Case. 2017. Systems and methods for ozone treatment of grain in grain piles. U.S. Patent 9,808,021, issued November 7, 2017.

Johnson, L., Albert, D.E., Case, V. and Johnson, K.C., Archer Daniels Midland Co, 2018. Systems and methods for continuous flow ozone treatment of grain. U.S. Patent 9,961,915.

Kaur, Kulwinder, Satish Kumar, Preetinder Kaur, Manpreet Kaur Saini, Arashdeep Singh, Manju Bala, and Dhanwinder Singh. 2024. Optimization of Process Parameters for Ozone Disinfestation of C. maculatus: Effects on Germination, in Vitro Protein Digestibility, Nutritional, Thermal and Pasting Properties of Mung Bean Grains. Ozone: Science & Engineering 46(2): 128-143.

Keatmaneerat, K., Y. Chanbang, and J. Kulsarin. 2011. Biology of Sawtoothed Grain Beetle (Oryzaephilus surinamensis L.) and Its Control Efficacy Using Ozone in Milled Rice (in Thai). Journal of Agriculture 27: 145–153.

Keivanloo, E., H. S. Namaghi, and M. H. H. Khodaparast. 2014. Effects of Low Ozone Concentrations and Short Exposure Times on the Mortality of Immature Stages of the Indian Meal Moth, Plodia interpunctella (Lepidoptera: Pyralidae). Journal of Plant Protection Research 54 (3): 267–271.

Kells S, Mason LJ, Maier DE, Woloshuk CP 2001. Efficacy and fumigation characteristics of ozone in stored maize. J Stored Prod Res 37: 371–382 Treatment of 8.9 tonnes (350 bu) of maize with 50 ppm ozone for 3 d resulted in 92–100% mortality of adult Tribolium castaneum, adult Sitophilus zeamais (Motsch.), and larval Plodia interpunctella and reduced by 63% the contamination level of Aspergillus parasiticus

Kim, Su Gil, Un Yong Paek, Ae Chun Ri, Song Ho Kim, …, and Songchol Hong. 2023. Modeling Ozone Deposition on Bulk Grains and Ozone Deposition in Columns of Wheat Grains. J. Stored Prod. Res. 104, 102177

Laban, Gomaa F. Abo, Khaled H. Metwaly, Fathia S. Al-Anany, and Samir A.M. Abdelgaleil. 2021. Efficacy of Ozone for Callosobruchus maculatus and Callosobruchus chinensis Control in Cowpea Seeds and Its Impact on Seed Quality. J. Stored Prod. Res. 92, 101786

Leesch JG 2002. The mortality of stored-product insects following exposure to gaseous ozone at high concentrations. In: Credland PF, Armitage DM, Bell CH, Cogan PM, Highley E (eds) Advances in stored product protection. Proceedings of the 8th international working conference on stored-product protection. CAB International, Wallingford, pp 827–831 Plodia interpunctella, Tribolium confusum

Lemic, Darija, Davor Jembrek, Renata Bazok, and Ivana Pajac Zivkovic. 2019. Ozone Effectiveness on Wheat Weevil Suppression: Preliminary Research. Insects 10(10), 357 Sitophilus granarius

Lu, Baoqian, Yonglin Ren, Yu-zhou Du, Yueguan Fu, and Jie Gu. 2009. Effect of Ozone on Respiration of Adult Sitophilus oryzae (L.), Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). Journal of Insect Physiology 55 (10): 885–889.

Mahroof, R. M., B. A. Amoah, and J. Wrighton. 2018. Efficacy of ozone against the life stages of Oryzaephilus mercator (Coleoptera: Silvanidae). J. Econ. Entomol. 111: 470–481.

Maier DE, Hulasare R, Campabadal CA, Woloshuk CP, Mason L 2006. Ozonation as a non-chemical stored product protection technology. In: Proceedings of the 9th international working conference on stored product protection. Brazilian Post-harvest Association, Campinas, pp 773–777

Mason, L. J., C. P. Woloshuk, and D. E. Maier. 1997. Efficacy of Ozone to Control Insects, Molds and Mycotoxins. p. 665–670. In Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products, Cyprus Printer Ltd.  edited by E. J. Donahaye, S. Navarro, and A. Varnava, Oryzaephilus surinamensis, Tribolium confusum, Tribolium castaneum

Mason, Linda. 2002. Ozone Fumigation. Grain Journal 30(6): 70–71.

McDonough, Marissa X. 2010. Ozone Technology in the Post-Harvest Storage Environment. PhD diss., Purdue University. Plodia interpunctella, Sitophilus oryzae, Sitophilus zeamais, Tribolium castaneum

McDonough, Marissa X., Carlos A. Campabadal, Linda J. Mason, Dirk E. Maier, Adrian Denvir, and Charles Woloshuk. 2011. Ozone Application in a Modified Screw Conveyor to Treat Grain for Insect Pests, Fungal Contaminants, and Mycotoxins. Journal of Stored Products Research 47(3): 249–254. Tribolium castaneum, Sitophilus zeamais, maize

McDonough, Marissa X., Linda J. Mason, and Charles P. Woloshuk. 2011. Susceptibility of Stored Product Insects to High Concentrations of Ozone at Different Exposure Intervals. Journal of Stored Products Research 47(4): 306–310. Plodia interpunctella, Sitophilus oryzae, Sitophilus zeamais, Tribolium castaneum

Mendez, F., D. E. Maier, L. J. Mason, and C. P. Woloshuk. 2003. Penetration of Ozone into Columns of Stored Grains and Effects on Chemical Composition and Processing Performance. Journal of Stored Products Research 39(1): 33–44.

Meng, Xianbing. 2011. Field Application of Ozone in Control of Stored Grain Insects and Mold. Grain Storage 40(3): 14–17.

Moraglio, S. T., L. Bosco, C. Pogolotti, and L. Tavella. 2018. Effect of Ozone Gas against Life Stages of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) in Laboratory and a Storehouse. Journal of Stored Products Research 79: 132–38

Pandiselvam, R., V. Chandrasekar, and V. Thirupathi. 2017. Numerical Simulation of Ozone Concentration Profile and Flow Characteristics in Paddy Bulks. Pest Manag. Sci. 73: 1698–1702.

Pandiselvam, R., V. Thirupathi, S. Mohan, P. Vennila, D. Uma, S. Shahir, and S. Anandakumar. 2019. Gaseous Ozone: A Potent Pest Management Strategy to Control Callosobruchus maculatus (Coleoptera: Bruchidae) Infesting Green Gram. J. Appl. Entomol. 143: 451–459.

Pereira, A. D. M., L. R. D. A. Faroni, A. H. De Sousa, W. I. Urruchi, and J. L. Paes. 2008. Influence of the Grain Temperature on the Ozone Toxicity to Tribolium castaneum. Rev. Bras. Eng. Agr. Ambient. 12: 493–497.

Pirani, S., C. Bersani, and Carlo Cantoni. 2009. Ozono ; Metodo Alternativo per l’eliminazione Degli Acari Da Speck (Ozone: Alternative Method for Mite Control on Speck). Italian Journal of Food Safety 1(6): 83–84. Tyrophagus putrescentiae, Tyrophagus longior, five cured meat factories

Portilla, M., P. A. Follett, J. W. Armstrong, J. G. Leesch, J. S. Tebbets, J. Smilanick, T. H. McHugh et al. 2021. Risk assessment of ozone fumigation under vacuum to control potential infestation of coffee berry borer and coffee leaf rust in green coffee beans imported into Hawaii. Journal of Economic Entomology 114(6): 2277-2289. Hypothenemus hampei

Rice RG, Farquhar JW, Bollyky LJ 1982. Review of the applications of ozone for increasing storage times of perishable foods. Ozone Sci Eng 4:147–163

*Rozado, A.F., D’Antonino Faroni, L.R., Urruchi, W.M.I., Guedes, R.N.C., and Paes, J.L. 2008. Aplicaçao de ozonio contra Sitophilus zeamais e Tribolium castaneum em milho Armazenado (Application of ozone against Sitophilus zeamais and Tribolium castaneum in corn Stored). Rev. Bras. Eng. Agrícola Ambient. 12: 282-285.

Sabet, Falah A., and Saadi H. Sabr. 2015. Evaluation the Efficacy of Ozone and Temperature to Control Mover Stages for Hairy Grain Beetle (khapra) in Laboratory Trogoderma granarium Everts Coleoptera: Dermestidae. Iraqi Journal of Science 56: 1904-1910.

Sabet, Falah A., and Saadi H. Sabr. 2015. Evaluation the efficacy of ozone and high temperature to control eggs and pupae stages laboratory for hairy grain beetle (khapra) Trogoderma granarium Everts Coleoptera: Dermestidae. Iraqi Journal of Science 56(3B): 2164-2169.

Sadeghi, Golam Reza, Ali Asgar Pourmirza, and Mohammad Hasan Safaralizade. 2011. Combined Effect of Ozone Mixed with Carbon Dioxide on the Mortality of Five Stored-Product Insects. Egypt. Acad. J. Biolog. Sci. 4(2): 9–19. Adult Sitophilus oryzae, Tribolium castaneum, Rhyzopertha dominica, and Oryzephilus surinamensis, and 3th larvae of Plodia interpunctella. The influence of ozone gas and carbon dioxide in the date is more than rice and wheat.

Sadeghi, Reza, Rahil Mirabi Moghaddam, and Masoud Taghizadeh. 2017. Application of Ozone to Control Dried Fig Pests—Oryzaephilus surinamensis (Coleoptera: Silvanidae) and Ephestia kuehniella (Lepidoptera: Pyralidae)—and Its Organoleptic Properties. Journal of Economic Entomology 110(5): 2052–2055.

Santos JED, Martins MA, Faroni LR, Andrade MP, Carvalho MCS 2007. Ozonization process: saturation time, decomposition kinetics and quality of maize grains (Zea mays L.). IOA conference and exhibition, Valencia, 29–31 Oct 2007

Savage, B. A. 2020. Exploring the Lethal and Sub-Lethal Insecticidal Properties of Ozone Using Spotted Wing Drosophila, Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) as a Model Organism. MS thesis, Michigan State University.

Savi, Geovana D., Thauan Gomes, Silvia B. Canever, Ana C. Feltrin, Karim C. Piacentini, Rahisa Scussel, Daysiane Oliveira, Ricardo A. Machado-de-Avila, and Maykon Cargnin Elidio Angioletto. 2020. Application of Ozone on Rice Storage: A Mathematical Modeling of the Ozone Spread, Effects in the Decontamination of Filamentous Fungi and Quality Attributes. J. Stored Prod. Res. 87, 101605

Seyedabadi, E., M. Aran, and R.M. Moghaddam. 2021. Application of Ozone against the Larvae of Plodia interpunctella (Hubner) and Its Impacts on the Organoleptic Properties of Walnuts. J. Food Protect. 84(1): 147–51.

Silva, M.V.A., L.R.A. Faroni, M.A. Martins, A.H. Sousa, and J.D. Bustos-Vanegas. 2020. CFD Simulation of Ozone Gas Flow for Controlling Sitophilus zeamais in Rice Grains. J. Stored Prod. Res. 88, 101675

Silva, M. V. A., L. R. A. Faroni, A. H. Sousa, L. H. F. Prates, and A. O. Abreu. 2019. Kinetics of the Ozone Gas Reaction in Popcorn Kernels. Journal of Stored Products Research 83: 168–175.

Silva, Gutierres Nelson, Lêda Rita D’Antonino Faroni, Paulo Roberto Cecon, Adalberto Hipolito de Sousa, and Fernanda Fernandes Heleno. 2016. Ozone to Control Rhyzopertha dominica (Coleoptera: Bostrichidae) in Stored Wheat Grains. Journal of Stored Products and Postharvest Research 7(4): 37–44.

Sousa, A. H., L. R. D. Faroni, A. d. M. Pereira, F. d. S. Cardoso, and E. Herbele. 2006. Influence of Grain Mass Temperature on Ozone Toxicity to Sitophilus zeamais (Coleoptera: Curculionidae). In Proceedings of the 9th International Working Conference on Stored Product Protection, edited by I. Lorini and others, p. 706–10. Brazilian Post-harvest Association ABRAPOS.

Sousa AH, Faroni LRDA, Guedes RNC, Totola MR, Urruchi WI 2008. Ozone as a management alternative against phosphine resistant insect pests of stored products. J Stored Prod Res 44(4): 379–385 Oryzaephilus surinamensis, Tribolium confusum, Rhyzopertha dominica

Sousa, A. H., L. R. A. Faroni, and R. N. C. Guedes. 2017. Locomotor Behavior of Sitophilus zeamais Populations under Sublethal Ozone Exposure. Journal of Pest Science 90: 239-247.

Sousa, A. H., L. R. D’A Faroni, M. A. G. Pimentel, G. N. Silva, and R. N. C. Guedes. 2016. Ozone Toxicity to Sitophilus zeamais (Coleoptera: Curculionidae) Populations under Selection Pressure from Ozone. Journal of Stored Products Research 65: 1–5.

Sousa, A. H., L. R. A. Faroni, G. N. Silva, and R. N. C. Guedes. 2012. Ozone Toxicity and Walking Response of Populations of Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Economic Entomology 105(6): 2187–2195.

Soares, C. E. D. S., A. Weber, E. S. Moecke, M. G. Reiter, V. M. Scussel, and C. Krebs De Souza. 2018. Use of ozone gas as a green control alternative to beetles Alphitobius diaperinus (panzer) infestation in aviary bed utilized in the poultry industry. Chemical Engineering Transactions 64: 589-594.

Steponavicius, D., A. Steponavicienė, A. Raila, E. Zvicevicius, and A. Kemzuraitė. 2012. Investigation on Ozone Penetration along Grain Mound Height. Journal of Food, Agriculture & Environment 10(1): 742–747.

Strait CA 1998. Efficacy of ozone to control insects and fungi in stored grain. M. S. Thesis, Purdue University, W. Lafayette  Achieved 100% mortality for adult Sitophilus zeamais, Tribolium castaneum, and Tribolium confusum with 3,600 ppm-h.

Subramanyam, Bhadriraju, E. Xinyi, Sara Savoldelli, and Blossom Sehgal. 2017. Efficacy of Ozone against Rhyzopertha dominica Adults in Wheat. Journal of Stored Products Research 70: 53–59

Taha, Rehab H., Nilly A.H. Abdel-fattah, and Marwa N. Moustafa. 2017. Efficacy of Ozone or Heat to Control Trogoderma granarium (Everts) Larvae, a Bombyx Mori L. Stored Cocoons Pest. Bull. Ent. Soc. Egypt, Econ. Ser. 43: 119–29.

Velasquez, Luz Paola Grisales, Faroni,Lêda Rita D’Antonino, Marco Aurélio Guerra Pimentel, Fernanda Fernandes Heleno, and Lucas Henrique Figueiredo Prates. 2017. Behavioral and Physiological Responses Induced by Ozone in Five Brazilian Populations of Rhyzopertha dominica. Journal of Stored Products Research 72: 111–116.

*Yoshida, Toshiharu 1975. Lethal Effect Of Ozone Gas on the Adults of Sitophilus oryzae (Coleoptera: Curculionidae) and Oryzaephilus surinamensis (Coleoptera: Cucujidae). Science Reports Faculty of Agriculture Okayama University 45: 10–15.

Zhanggui, Q., Xia, W., Gang, D., Xiaoping, Y., Xuechao, H., Deke, X., Xingwen, L., 2003. Investigation of the use of ozone fumigation to control several species of stored grain insects. In: Credland, P.F., Armitage, D.M., Bell, C.H., Cogan, P.M., Highley, E. (Eds.), Advances in Stored Product Protection. Proceedings of the 8th International Working Conference on Stored-product Protection. CAB International, Oxon, UK, pp. 846-851. Sitophilus zeamais, Rhyzopertha dominica and Tribolium castaneum in rice, wheat and maize

Cold plasma

Abotaleb, Abeer O., Naglaa F. Badr, and Usama M. Rashed. 2021. Assessment of the Potential of Non-Thermal Atmospheric Pressure Plasma Discharge and Microwave Energy against Tribolium castaneum and Trogoderma granarium. Bulletin of Entomological Research 111(5): 528–543. Trogoderma granarium larvae appeared more tolerant to non-thermal Atmospheric Pressure Plasma Discharge and the microwave energy than adults. Germination percentage of wheat grains increased with exposure time.

Afsheen, S., U. Fatima, T. Iqbal, M. Abrar, S. Muhammad, A. Saeed, M. Isa, M. F. Malik, and S. Shamas. 2019. Influence of Cold Plasma Treatment on Insecticidal Properties of Wheat Seeds against Red Flour Beetle. Plasma Science and Technology 21, 085506

*Al-Hawat, Sharif, George Saour, and Ayman Al-Mariri. 2024. Inactivation of Microorganisms and Potato Tuber Moth Eggs and Pupae Using a Dielectric Barrier Discharge Plasma. Journal of Stress Physiology & Biochemistry 20(2): 107-113.

Carpen, L., C. Chireceanu, M. Teodorescu, A. Chiriloaie, A. Teodoru, and G . Dinescu. 2019. The Effect of Argon/Oxygen and Argon/Nitrogen Atmospheric Plasma Jet on Stored Products Pests. Romanian Journal of Physics 64: 503–516. Mortality Tribolium castaneum, Tribolium confusum was obtained upon Argon/Nitrogen plasma treatments, while mortality decreases at higher oxygen concentrations.

El-Aziz, Mona F. Abd, Eman A. Mahmoud, and Ga M. Elaragi. 2014. Non Thermal Plasma for Control of the Indian Meal Moth, Plodia Interpunctella (Lepidoptera: Pyralidae). Journal of Stored Products Research 59: 215–21. Significant increases in larval and pupal mortality and a decrease in adult emergence were observed with increase of atmospheric-pressure plasma jet (APPJ) pulses (0, 1, 5, 10, 15 or 20) and decrease of distance from the nozzle (11, 13 or 15 cm). Larvae were more sensitive than pupae to the irradiation, but the treated pupae induced a higher percentage of malformed adults than treated larvae.

Esmaeili, Zahra, Bahram Hosseinzadeh Samani, Alireza Nemati, Firouzeh Nazari, and Sajad Rostami. 2021. Development of Novel Green Pesticide System by Using Cold Plasma to Control Plodia interpunctella in Pistachio. Journal of Food Processing and Preservation 45(7), e15621.

Hassan, A. M., T. M. Sileem, and R. S. Hassan. 2019. Verification of Atmospheric Plasma Irradiation as an Alternative Control Method for Tribolium castaneum (Herbst). Brazilian Journal of Biology 80: 673–679.

Kaur, M., D. Huberli, and K. L. Bayliss. 2020. Cold Plasma: Exploring a New Option for Management of Postharvest Fungal Pathogens, Mycotoxins and Insect Pests in Australian Stored Cereal Grain. Crop and Pasture Science 71(8): 715–24. Studies conducted on rice, wheat, corn, barley and oats have demonstrated that cold plasma significantly reduced the amount of fungi, bacteria and their spores on grain surfaces. Cold plasma may also detoxify mycotoxins, and control insect pests.

Keever, D., Dowdy, A.K., Bures, B.L., Hankins, O.E., Bourham, M.A., 2001. Mortality and sterility of the cigarette beetle, Lasioderma serricorne (F.), due to exposure to atmospheric plasma. In: 2001 Annual Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 5e9, 2001, San Diego, California, pp. 128(1-4).

Kirk-Bradley, Nahndi, Suzania Hujon, Aditi Rohilla, Megan Burciaga, Keyan Zhu-Salzman, and Janie McClurkin Moore. 2024. Atmospheric cold plasma-induced mortality in Sitophilus oryzae (L.). Crop Protection 181, 106685.

Madathil, Reshma Vadakhe, Ranjith Gracy Thirugnanasambandan Kalaivendan, Anjaly Paul, and Mahendran Radhakrishnan. 2021. In Package Control of Rhyzopertha dominica in Wheat Using Continuous Atmospheric Jet Cold Plasma System. Frontiers Advance Material Research 3(1): 10–25.

Nasr, M. E. H. 2020. Susceptibility of The Saw-Toothed Grain Beetle, Oryzaephlius surinamensis (L.) and The Indian Meal Moth, Plodia interpunctella (Hübner) Infested Stored Products to Cold Plasma. Journal of Plant Protection and Pathology 11(6): 299–302.

Nasr, M.E.H., R.A. Zinhoum, and K. Lotfy. 2020. Efficacy of Cold Plasma against Three of Stored Grain Insects. International Journal of Entomology Research 5: 115–117. Sitophilus granarius, Rhizopertha dominica and Tribolium castaneum

Pathan, F. L., R. R. Deshmukh, and U. S. Annapure. 2021. Potential of Cold Plasma to Control Callosobruchus chinensis (Chrysomelidae: Bruchinae) in Chickpea Cultivars during Four Year Storage. Scientific Reports 11(1), 13425 p. 1–10.

Paul, A., and M. Radhakrishnan. 2020. Mortality of Tribolium castaneum and Quality Changes in Oryza sativa by Indirect Exposure to Non-Thermal Plasma. Frontiers in Advanced Materials Research 2: 26–40.

Radhakrishnan, Mahendran, Kalaiselvan Ratish Ramanan, Ravichandran Sargunam, and Ravi Sarumathi. 2016. Effect of Cold Plasma on Mortality of Tribolium castaneum on Maida Flour. Agricultural Engineering 41(3): 37–44.

Ratish Ramanan, K., R. Sarumathi, and R. Mahendran. 2018. Influence of Cold Plasma on Mortality Rate of Different Life Stages of Tribolium castaneum on Refined Wheat Flour. Journal of Stored Products Research 77: 126–134.

Sayed, Waheed A.A., Reda S. Hassan, Thanaa M. Sileem, and Birgit A. Rumpold. 2021. Impact of Plasma Irradiation on Tribolium castaneum. Journal of Pest Science 94: 1405–1414. Helium radio frequency plasma (RFP) was more efficient than Argon RFP. Optimum exposure time was 90 s with He RFP with mortalities of 71.4, 65.3 and 36.7% for pupae, larvae and adult stage.

Scally L, Lalor J, Gulan M, Cullen PJ, and Milosavljevic V 2018. Spectroscopic study of excited molecular nitrogen generation due to interactions of metastable noble gas atoms. Plasma Processes and Polymers15, e1800018  Possible design for a plasma grain auger was illustrated.

Shahrzad, Mohammadi S., D. Dorranian, S. Tirgari, and M. Shojaee. 2015. The Effect of Non-Thermal Plasma to Control of Stored Product Pests and Changes in Some Characters of Wheat Materials. Journal of Biodiversity and Environmental Sciences 7: 150–156. Ephestia kuehniella, Tribolium confusum

Sileem TM, Hassan RS, and Mahmoud EA. 2020. Adulticidal Activity of Atmospheric Plasma Irradiation against the Red Flour Beetle, Tribolium castaneum. Intern J Trop Insect Sci 40: 645–50.

Sutar, Swapnil A., Rohit Thirumdas, Bhushan B. Chaudhari, Rajendra R. Deshmukh, and Uday S. Annapure. 2021. Effect of Cold Plasma on Insect Infestation and Keeping Quality of Stored Wheat Flour. J. Stored Prod. Res. 92, 101774. Plodia interpunctella, Tribolium castaneum, Tribolium confusum

Than, Ha An Quoc, Minh Anh Ngoc Tran, Trung Thanh Nguyen, Thien Huu Pham, … and Ahmed Khacef 2024. Control of Sitophilus oryzae (L.) using argon and helium atmospheric non-thermal plasma. J. Stored Prod. Res. 108,102394

Ucar, Yilmaz, Zafer Ceylan, Mustafa Durmus, Oktay Tomar, and Turgay Cetinkaya. 2021. Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science & Technology 114: 355-371

Zilli, Carla, Nicolas Pedrini, Eduardo Prieto, Juan Roberto Girotti, Pablo Vallecorsa, Matías Ferreyra, Juan Camilo Chamorro, et al. 2022. Non-Thermal Plasma as Emerging Technology for Tribolium castaneum Pest-Management in Stored Grains and Flours. J. Stored Prod. Res. 99, 102031

Ziuzina, Dana, Robin Van Cleynenbreugel, Claudio Tersaruolo, and Paula Bourke. 2021. Cold Plasma for Insect Pest Control: Tribolium castaneum Mortality and Defense Mechanisms in Response to Treatment. Plasma Processes and Polymers 18(10), 2000178 Mortality of 95.0%–100% for preadult stages can be achieved within seconds, but longer plasma exposure (5 min) is required to kill adult insects. Cold plasma treatment reduces both the respiration rate and the weight of insects and affects the levels of oxidative stress markers in adult populations.

Degradation insecticides

Aidoo, Owusu Fordjour, Jonathan Osei-Owusu, Shaphan Yong Chia, Aboagye Kwarteng Dofuor, Akua Konadu Antwi-Agyakwa, Harry Okyere, Michael Gyan, George Edusei, Kodwo Dadzie Ninsin, Rahmat Quaigrane Duker, Shahida Anusha Siddiqui,and Christian Borgemeister 2023. Remediation of pesticide residues using ozone: A comprehensive overview. Science of the Total Environment 894, 164933.

Anbarasan, R., S. Jaspin, B. Bhavadharini, Akash Pare, R. Pandiselvam, and R. Mahendran. 2022. Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone treatments. Food Science and Technology (LWT) 159, 113193.

Chanrattanayothin, P., Peng-Ont, D., Masa-Ad, A., Warisson, T., Nirunsin, R., Sintuya, H., 2020. Degradation of cypermethrin and dicofol pesticides residue in dried basil leave by gaseous ozone fumigation. Ozone Sci. Eng. 42 (5), 469–476.

de Avila, Mariane BR, Lêda Rita A. Faroni, Fernanda F. Heleno, Maria Eliana LR de Queiroz, and Luiz P. Costa. 2017. Ozone as degradation agent of pesticide residues in stored rice grains. Journal of food science and technology 54(12): 4092-4099. 91.9% of bifenthrin and 92.7% of deltamethrin were degraded by ozone. The percentage of bifenthrin and deltamethrin removal was proportional to the period of exposure to the gas.

de Freitas, Romenique da Silva de, Lêda Rita D’Antonino Faroni, Maria Eliana Lopes Ribeiro de Queiroz, Fernanda Fernandes Heleno, and Lucas Henrique Figueiredo Prates. 2017. Degradation Kinetics of Pirimiphos-Methyl Residues in Maize Grains Exposed to Ozone Gas. Journal of Stored Products Research 74: 1–5.

Misra, N. N. 2015. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends in Food Science & Technology 45(2), 229–244.

Misra, N.N., X. Yepez, L. Xu, and K. Keener. 2019. In-Package Cold Plasma Technologies. J Food Eng 244: 21–31. Effective against a range of microorganisms, including bacteria, fungi, spores and viruses, as well as pesticides and mycotoxins.

Pandiselvam, R., R. Kaavya, Yasendra Jayanath, Kornautchaya Veenuttranon, V. Piraya Lueprasitsakul, Anjineyulu Kothakota Divya, and S. V. Ramesh. 2020. Ozone as a Novel Emerging Technology for the Dissipation of Pesticide Residues in Foods–a Review. Trends in Food Science and Technology 97: 38–54.

Savi, Geovana D., Karim C. Piacentini, and Vildes M. Scussel. 2015. Reduction in Residues of Deltamethrin and Fenitrothion on Stored Wheat Grains by Ozone Gas. Journal of Stored Products Research 61(1): 65–69.

Savi, G.D., Piacentini, K.C., Bortolotto, T., Scussel, V.M., 2016. Degradation of bifenthrin and pirimiphos-methyl residues in stored wheat grains (Triticum aestivum L.) by ozonation. Food Chem. 203: 246–251.

Wang, Shan, Jiayi Wang, Tianyu Wang, Chen Li and Zhaoxia Wu 2019. Effects of ozone treatment on pesticide residues in food: a review. International Journal of Food Science and Technology 54(2): 301-312.

Whangchai, K., J. Uthaibutra, S. Phiyanalinmat, S. Pengphol, and N. Nomura. 2011. Effect of Ozone Treatment on the Reduction of Chlorpyrifos Residues in Fresh Lychee Fruits. Ozone: Science and Engineering33(3): 232–235.

Reviews control fungi and degrade mycotoxins

Afsah‐Hejri, Leili, Parvaneh Hajeb, and Reza J. Ehsani. 2020. Application of ozone for degradation of mycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety 19(4): 1777-1808

Conte, Giuseppe, Marco Fontanelli, Francesca Galli, Lorenzo Cotrozzi, Lorenzo Pagni, and Elisa Pellegrini. 2020. Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins 12(8): 486.

Kim JG, Yousef AE, and Dave S 1999. Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot 62:1071–1087

Liu, Mengjie, Junxia Feng, Xudong Yang, Bo Yu, Jie Zhuang, Hangbo Xu, Qisen Xiang, Ruonan Ma, and Zhen Jiao. 2024. Recent advances in the degradation efficacy and mechanisms of mycotoxins in food by atmospheric cold plasma. Ecotoxicology and Environmental Safety 270, 115944.

Liu, Yue, Joseph Hubert Galani Yamdeu, Yun Yun Gong, and Caroline Orfila. 2020. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Comprehensive Reviews in Food Science and Food Safety 19(4): 1521-1560.

Luo, Y., Liu, X., and Li, J. 2018. Updating techniques on controlling mycotoxins – A review. Food Control, 89: 123–132.

Mahato, Dipendra Kumar, Sheetal Devi, Shikha Pandhi, Bharti Sharma, Kamlesh Kumar Maurya, Sadhna Mishra, Kajal Dhawan et al. 2021. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins 13(2), 92.

Wang, S., H. Liu, J. Lin, and Y. Cao. 2010. Can Ozone Fumigation Effectively Reduce Aflatoxin B1 and Other Mycotoxins Contamination on Stored Grain? In Proceedings of the 10th International Working Conference on Stored Product Protection edited by M. O. Carvalho, P. G. Fields, C. S. Adler, F. H. Arthur, C. G. Athanassiou, J. F. Campbell, F. Fleurat-Lessard, et al., p. 582–588. Julius Kühn-Institut.

Wang, Yan, Jie Shang, Ming Cai, Yang Liu, and Kai Yang. 2023. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: A review of the past five years. Critical Reviews in Food Science and Nutrition 63(33): 11668-11678.